Prediction of atrial fibrillation by 12-lead electrocardiogram parameters in patients without structural heart disease

医学 心房颤动 内科学 心脏病学 窦性心律 QRS波群 逻辑回归 正常窦性心律 心电图
作者
Naomi Hirota,Shinya Suzuki,Takuto Arita,Naoharu Yagi,Takayuki Otsuka,Hiroaki Semba,H. Kano,S Matsuno,Yuko Kato,Toshifumi Uejima,Y. OIKAWA,Junji Yajima,Takeshi Yamashita
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:41 (Supplement_2) 被引量:1
标识
DOI:10.1093/ehjci/ehaa946.0536
摘要

Abstract Background Recently, the analysis of electrocardiogram (ECG) waveform by artificial intelligence has been reported to pick out those who have atrial fibrillation (AF) or have a high potential of developing AF, which, however, cannot explain the mechanisms or algorisms for the prediction from its nature. Purpose The purpose of this study is to conduct a comprehensive analysis to investigate the difference of weighting in predicting capability for AF among hundreds of automatically-measured ECG parameters using a single ECG at sinus rhythm. Methods and results Out of Shinken Database 2010–2017 (n=19170), 12825 patients were extracted, where those with ECG showing AF rhythm at the initial visit (including all persistent/permanent AF and a part of paroxysmal AF) and those with structural heart diseases were excluded. Out of 639 automatically-measured ECG parameters in MUSE data management system (GE Healthcare, USA), 438 were used. [Analysis 1] A predicting model for paroxysmal AF were determined by logistic regression analysis (Total, n=12825; paroxysmal AF, n=1138), showing a high predictive capability (AUC = 0.780, p<0.001). In this model, the relative contribution of ECG parameters (by coefficient of determination) according to the time phase were P:72.4%, QRS:32.7%, and ST-T:13.7%, respectively (Figure A). [Analysis 2] Excluding AF at baseline, a predicting model for new-developed AF were determined by Cox regression analysis (Total, n=11687; new-developed AF, n=87), showing a high predictive capability (AUC = 0.887, p<0.001). In this model, the relative contribution of parameters (by log likelihood) according to the time phase were P:40.8%, QRS:42.5%, and ST-T:24.9%, respectively (Figure B). Conclusions We determined ECG parameters that potentially contribute to picking up existing AF or predicting future development of AF, where the measurement of P wave strongly contributed in the former whereas all time phases were similarly important in the latter. Weighting of parameters to predict AF Funding Acknowledgement Type of funding source: Private hospital(s). Main funding source(s): Self funding of the institute

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Damon发布了新的文献求助10
1秒前
黄黄黄发布了新的文献求助10
1秒前
1秒前
中中应助科研通管家采纳,获得10
1秒前
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
中中应助科研通管家采纳,获得10
1秒前
sswbzh应助科研通管家采纳,获得50
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
sswbzh应助科研通管家采纳,获得50
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
2秒前
恋如雪止应助科研通管家采纳,获得10
2秒前
2秒前
恋如雪止应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
活泼天晴应助科研通管家采纳,获得10
2秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5744681
求助须知:如何正确求助?哪些是违规求助? 5421187
关于积分的说明 15350539
捐赠科研通 4884846
什么是DOI,文献DOI怎么找? 2626193
邀请新用户注册赠送积分活动 1574947
关于科研通互助平台的介绍 1531779