蛭石
氟化物
化学
地下水
吸附
锰
氧化物
环境修复
核化学
活性氧化铝
环境化学
污染
无机化学
材料科学
地质学
复合材料
生物
岩土工程
生态学
有机化学
作者
Ísis Cristina Garcia Saraiva,Sibele Ezaki,Giovanna Dias Calabria,Mirian Chieko Shinzato
标识
DOI:10.1080/09593330.2021.1894242
摘要
Fluoride concentrations in groundwater can be high in some Brazilian aquifers and therefore these waters should be treated before consumption. This study assessed the properties of Mn-oxide-coated alumina (AM) prepared by two-step heating in water defluoridation. The release of secondary contaminants (e.g. Al3+ and Mn2+) from alumina was also examined, as their removal by vermiculite. The process of Mn-oxide coating changed some properties of the activated alumina (AA), decomposing the crystalline phases and reducing some parameters, e.g. specific surface area (from 295.90 to 94.51 m2 g-1) and pHPZC (from 7.34 to 5.74). These changes increased the efficiency and kinetics of alumina in removing F- from synthetic solutions and groundwater (from 80%/16 h to 100%/1 h). This efficiency was not affected by the presence of other anions in groundwater, such as HCO3- and SO42-. The optimum rate of F- removal occurred at pH 5; however, during the F- removal, Al3+ and Mn2+ ions were released, respectively, from the AA (0.61 mg L-1 Al3+) and from the AM ( 52 mg L-1 Mn2+). Vermiculite used to remove these cations adsorbed about 86% Al3+ and 90% Mn2+. However, only Al3+ concentrations fell below the standard limit for drinking water of <0.5 mg L-1. Therefore, AA has the advantage of not containing Mn, and after 3 h kept F- concentrations in solutions 5 mg L-1F- below the standard limit of 1.5 mg L-1. This study revealed that, depending on the groundwater characteristics, AA may be more efficient and sustainable for defluoridation than coated alumina.
科研通智能强力驱动
Strongly Powered by AbleSci AI