计算机科学
人工智能
多光谱图像
变更检测
模式识别(心理学)
卷积神经网络
特征提取
目标检测
转化(遗传学)
特征(语言学)
高光谱成像
无监督学习
遥感
计算机视觉
地理
哲学
基因
化学
生物化学
语言学
作者
Ganchao Liu,Yuan Yuan,Yuelin Zhang,Yongsheng Dong,Xuelong Li
标识
DOI:10.1109/tgrs.2020.3026099
摘要
Due to the inconsistent imaging environment, the styles of multitemporal multispectral images (MSIs) are quite different, such as image brightness and transparency. For multitemporal MSIs with different styles, the "same object with different spectra" problem is one of the biggest challenges in change detection. To overcome the challenge, a novel unsupervised spatial–spectral feature learning (FL) framework based on style transformation (ST) (called STFL-CD) is proposed for MSI change detection in this article. For dual-temporal MSIs, the proposed STFl-CD algorithm consists of two phases: ST and spatial–spectral FL. Since the image styles are inconsistent under different imaging environments, the first innovation is to transform the image styles through unmixing and reconstruction. Through ST, the challenge of the "same object with different spectra" problem will be reduced fundamentally. By introducing the attention mechanism, the other innovation is to extract the joint spectral–spatial change features based on a 3-D convolutional neural network with spatial and channel attention. In addition, for multitemporal MSIs, a multitemporal version STFL-CD (MT-STFL-CD) framework is designed based on a recurrent neural network to learn the correlation features between multitemporal remote sensing images. Both of the visual and quantitative results on the real MSI datasets indicate that the proposed unsupervised STFL-CD frameworks have significant advantages on multitemporal MSI change detection. In particular, the performance of the proposed unsupervised STFL-CD algorithm is even comparable to that of the state-of-the-art supervised or semisupervised methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI