Style Transformation-Based Spatial–Spectral Feature Learning for Unsupervised Change Detection

计算机科学 人工智能 多光谱图像 变更检测 模式识别(心理学) 卷积神经网络 特征提取 目标检测 转化(遗传学) 特征(语言学) 高光谱成像 无监督学习 遥感 计算机视觉 地理 哲学 基因 化学 生物化学 语言学
作者
Ganchao Liu,Yuan Yuan,Yuelin Zhang,Yongsheng Dong,Xuelong Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:31
标识
DOI:10.1109/tgrs.2020.3026099
摘要

Due to the inconsistent imaging environment, the styles of multitemporal multispectral images (MSIs) are quite different, such as image brightness and transparency. For multitemporal MSIs with different styles, the "same object with different spectra" problem is one of the biggest challenges in change detection. To overcome the challenge, a novel unsupervised spatial–spectral feature learning (FL) framework based on style transformation (ST) (called STFL-CD) is proposed for MSI change detection in this article. For dual-temporal MSIs, the proposed STFl-CD algorithm consists of two phases: ST and spatial–spectral FL. Since the image styles are inconsistent under different imaging environments, the first innovation is to transform the image styles through unmixing and reconstruction. Through ST, the challenge of the "same object with different spectra" problem will be reduced fundamentally. By introducing the attention mechanism, the other innovation is to extract the joint spectral–spatial change features based on a 3-D convolutional neural network with spatial and channel attention. In addition, for multitemporal MSIs, a multitemporal version STFL-CD (MT-STFL-CD) framework is designed based on a recurrent neural network to learn the correlation features between multitemporal remote sensing images. Both of the visual and quantitative results on the real MSI datasets indicate that the proposed unsupervised STFL-CD frameworks have significant advantages on multitemporal MSI change detection. In particular, the performance of the proposed unsupervised STFL-CD algorithm is even comparable to that of the state-of-the-art supervised or semisupervised methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跃的访琴完成签到 ,获得积分10
1秒前
传奇3应助典雅的俊驰采纳,获得10
1秒前
xiaowang完成签到,获得积分20
1秒前
Andy完成签到,获得积分10
2秒前
肚子幽伤发布了新的文献求助10
3秒前
蔺天宇完成签到,获得积分10
3秒前
Deanna完成签到 ,获得积分10
3秒前
Wcc完成签到,获得积分10
4秒前
jiyy发布了新的文献求助10
4秒前
slm完成签到,获得积分10
5秒前
6秒前
魔法披风完成签到,获得积分10
7秒前
李爱国应助LQX2141采纳,获得10
8秒前
ecoli完成签到,获得积分10
9秒前
酷波er应助paper reader采纳,获得10
10秒前
ShengxK完成签到,获得积分10
11秒前
xavier完成签到 ,获得积分10
12秒前
舒适的天奇完成签到 ,获得积分10
13秒前
烂漫的灰狼完成签到,获得积分10
14秒前
TTT关闭了TTT文献求助
14秒前
年轻的大叔完成签到,获得积分10
14秒前
15秒前
会飞的猪完成签到,获得积分10
15秒前
肚子幽伤完成签到,获得积分10
15秒前
16秒前
希望天下0贩的0应助sss采纳,获得10
16秒前
研学弟完成签到,获得积分10
17秒前
只想发财完成签到,获得积分10
18秒前
18秒前
哈哈哈完成签到,获得积分10
19秒前
又村完成签到 ,获得积分10
21秒前
tobedifferent发布了新的文献求助10
21秒前
21秒前
22秒前
风清扬发布了新的文献求助10
23秒前
jiyy完成签到,获得积分20
23秒前
xiaowang关注了科研通微信公众号
23秒前
小小沙完成签到,获得积分10
24秒前
caozhi发布了新的文献求助10
25秒前
木南楠a完成签到,获得积分10
26秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963468
求助须知:如何正确求助?哪些是违规求助? 3509214
关于积分的说明 11145781
捐赠科研通 3242505
什么是DOI,文献DOI怎么找? 1791907
邀请新用户注册赠送积分活动 873242
科研通“疑难数据库(出版商)”最低求助积分说明 803675