亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Attention-Based Gated Recurrent Unit for Gesture Recognition

手势 手势识别 计算机科学 可穿戴计算机 人工智能 循环神经网络 人工神经网络 深度学习 运动(物理) 隐马尔可夫模型 接口(物质) 计算机视觉 人机交互 机器学习 嵌入式系统 气泡 最大气泡压力法 并行计算
作者
Ghazaleh Khodabandelou,Pyeong-Gook Jung,Yacine Amirat,Samer Mohammed
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:18 (2): 495-507 被引量:35
标识
DOI:10.1109/tase.2020.3030852
摘要

Gesture recognition becomes a thriving research area in modern human motion recognition systems. The intensification of demands on efficient interactive human-machine-interface systems, commercial objectives, and many other factors contributes to fuel this revival dynamics. Understanding human gestures becomes essential for prevention and health monitoring applications. In particular, analyzing hand gestures is of paramount importance in personalized healthcare-related applications to help practitioners providing more qualitative assessments of subject's pathologies, such as Parkinson's diseases. This work proposes a novel deep neural network approach to forecast future gestures from a given sequence of hand motion using a wearable capacitance sensor of an innovative gesture recognition hardware system. To do this, we use an attention-based recurrent neural network to capture the temporal features of hand motion to unveil the underlying pattern between the gesture and these sequences. While the attention layers capture patterns from the weights of the short term, the gated recurrent unit (GRU) neural network layer learns the inherent interdependency of long-term hand gesture temporal sequences. The efficiency of the proposed model is evaluated with respect to cutting-edge work in the field using several metrics. Note to Practitioners-In this article, the problem of human hand gesture recognition is analyzed using deep learning techniques. The proposed model uses input historical motion sequences collected from a wearable capacitance sensor to predict hand gestures. The model leverages the intrinsic correlation of motion sequences and extracts the salient part of the sequences by taking into consideration their temporal, complex, and nonlinear features. The approach studies the effect of different lengths of historical motion sequences in prediction outcomes. This allows for avoiding using cumbersome data collection, heavy data treatment, and high computational cost. The model performance is trained and assessed on real-world data by performing comparisons with alternative approaches, including well-known classifiers. The model yields very encouraging results and demonstrates that the proposed approach is quite competitive as it can reproduce typical activity trends for important channels. The present findings could help in the development of intelligent wearable devices for predicting hand gestures using a limited number of channels. This work could also help practitioners to provide a more qualitative appraisal of patients suffering from different pathologies such as Parkinson's diseases to personalized healthcare-related applications and to develop wearable gesture recognition devices on a large scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
8秒前
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
1分钟前
打打应助安静的睿渊采纳,获得10
1分钟前
bee发布了新的文献求助10
2分钟前
nojego完成签到,获得积分10
2分钟前
李志全完成签到 ,获得积分10
2分钟前
科研剧中人完成签到,获得积分10
2分钟前
2分钟前
上官听白发布了新的文献求助30
3分钟前
小四完成签到,获得积分10
3分钟前
3分钟前
可可发布了新的文献求助10
3分钟前
3分钟前
周周完成签到 ,获得积分10
3分钟前
可可完成签到,获得积分20
3分钟前
GPTea举报yy求助涉嫌违规
4分钟前
GPTea举报Hoo求助涉嫌违规
4分钟前
100完成签到,获得积分0
4分钟前
矢思然完成签到,获得积分10
5分钟前
心想柿橙完成签到,获得积分10
5分钟前
嘻嘻完成签到,获得积分10
6分钟前
MchemG完成签到,获得积分0
6分钟前
6分钟前
6分钟前
6分钟前
lorentzh完成签到,获得积分10
6分钟前
勤恳依霜发布了新的文献求助10
6分钟前
烟花应助勤恳依霜采纳,获得10
7分钟前
yu完成签到,获得积分10
7分钟前
李爱国应助科研通管家采纳,获得10
7分钟前
星辰大海应助科研通管家采纳,获得10
7分钟前
上官听白完成签到,获得积分10
8分钟前
Perry完成签到,获得积分10
8分钟前
9分钟前
搜集达人应助科研通管家采纳,获得10
9分钟前
NexusExplorer应助科研通管家采纳,获得10
9分钟前
量子星尘发布了新的文献求助10
10分钟前
淡淡的秋柳完成签到 ,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952365
求助须知:如何正确求助?哪些是违规求助? 4215092
关于积分的说明 13111129
捐赠科研通 3996993
什么是DOI,文献DOI怎么找? 2187723
邀请新用户注册赠送积分活动 1202987
关于科研通互助平台的介绍 1115712