Predictors of real-time fMRI neurofeedback performance and improvement – A machine learning mega-analysis

神经反射 心理学 感觉运动节律 心理干预 脑-机接口 大脑活动与冥想 神经影像学 物理医学与康复 认知心理学 脑电图 医学 神经科学 精神科
作者
Amelie Haugg,Fabian M. Renz,Andrew A. Nicholson,Cindy Sumaly Lor,Sebastian J. Götzendorfer,Ronald Sladky,Stavros Skouras,Amalia McDonald,Cameron Craddock,Lydia Hellrung,Matthias Kirschner,Marcus Herdener,Yury Koush,Marina Papoutsi,Jackob N. Keynan,Talma Hendler,Kathrin Cohen Kadosh,Catharina Zich,Simon H. Kohl,Manfred Hallschmid
出处
期刊:NeuroImage [Elsevier BV]
卷期号:237: 118207-118207 被引量:47
标识
DOI:10.1016/j.neuroimage.2021.118207
摘要

Real-time fMRI neurofeedback is an increasingly popular neuroimaging technique that allows an individual to gain control over his/her own brain signals, which can lead to improvements in behavior in healthy participants as well as to improvements of clinical symptoms in patient populations. However, a considerably large ratio of participants undergoing neurofeedback training do not learn to control their own brain signals and, consequently, do not benefit from neurofeedback interventions, which limits clinical efficacy of neurofeedback interventions. As neurofeedback success varies between studies and participants, it is important to identify factors that might influence neurofeedback success. Here, for the first time, we employed a big data machine learning approach to investigate the influence of 20 different design-specific (e.g. activity vs. connectivity feedback), region of interest-specific (e.g. cortical vs. subcortical) and subject-specific factors (e.g. age) on neurofeedback performance and improvement in 608 participants from 28 independent experiments. With a classification accuracy of 60% (considerably different from chance level), we identified two factors that significantly influenced neurofeedback performance: Both the inclusion of a pre-training no-feedback run before neurofeedback training and neurofeedback training of patients as compared to healthy participants were associated with better neurofeedback performance. The positive effect of pre-training no-feedback runs on neurofeedback performance might be due to the familiarization of participants with the neurofeedback setup and the mental imagery task before neurofeedback training runs. Better performance of patients as compared to healthy participants might be driven by higher motivation of patients, higher ranges for the regulation of dysfunctional brain signals, or a more extensive piloting of clinical experimental paradigms. Due to the large heterogeneity of our dataset, these findings likely generalize across neurofeedback studies, thus providing guidance for designing more efficient neurofeedback studies specifically for improving clinical neurofeedback-based interventions. To facilitate the development of data-driven recommendations for specific design details and subpopulations the field would benefit from stronger engagement in open science research practices and data sharing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xfl发布了新的文献求助10
1秒前
科研通AI2S应助生动的芷波采纳,获得10
2秒前
FashionBoy应助沈彬彬采纳,获得10
2秒前
3秒前
领导范儿应助4123采纳,获得10
3秒前
糕糕发布了新的文献求助10
3秒前
lmw完成签到,获得积分20
3秒前
3秒前
3秒前
777分完成签到,获得积分10
4秒前
zzyx完成签到,获得积分10
4秒前
AVsecurity完成签到 ,获得积分10
5秒前
6秒前
愉快天亦发布了新的文献求助10
6秒前
SEAL完成签到,获得积分10
6秒前
7秒前
勤奋的小伙完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
Yixiaofei完成签到,获得积分10
9秒前
Orange应助苗条的老九采纳,获得10
10秒前
开心发布了新的文献求助10
11秒前
djdh发布了新的文献求助10
12秒前
小马甲应助arabidopsis采纳,获得10
13秒前
yeu103325完成签到,获得积分10
14秒前
15秒前
15秒前
丘比特应助发发旦旦采纳,获得10
16秒前
健康小宋完成签到,获得积分10
17秒前
乐乐应助忧心的棉花糖采纳,获得10
17秒前
kingwill应助Chang采纳,获得20
17秒前
18秒前
复杂的薯片完成签到 ,获得积分10
18秒前
21秒前
22秒前
22秒前
22秒前
星辰大海应助万嘉俊采纳,获得10
23秒前
文艺宛海发布了新的文献求助10
24秒前
吃不起橘子了完成签到,获得积分10
24秒前
txg发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4932778
求助须知:如何正确求助?哪些是违规求助? 4201141
关于积分的说明 13051677
捐赠科研通 3975102
什么是DOI,文献DOI怎么找? 2178132
邀请新用户注册赠送积分活动 1194565
关于科研通互助平台的介绍 1105881