High-Throughput Plant Phenotyping Platform (HT3P) as a Novel Tool for Estimating Agronomic Traits From the Lab to the Field

物候学 吞吐量 计算机科学 比例(比率) 人口 领域(数学) 数据科学 稀缺 生物 地理 电信 基因组学 地图学 社会学 无线 纯数学 微观经济学 经济 人口学 基因组 基因 生物化学 数学
作者
Daoliang Li,Chaoqun Quan,Zhaoyang Song,Xiang Li,Guanghui Yu,Cheng Li,Akhter Muhammad
出处
期刊:Frontiers in Bioengineering and Biotechnology [Frontiers Media]
卷期号:8 被引量:26
标识
DOI:10.3389/fbioe.2020.623705
摘要

Food scarcity, population growth, and global climate change have propelled crop yield growth driven by high-throughput phenotyping into the era of big data. However, access to large-scale phenotypic data has now become a critical barrier that phenomics urgently must overcome. Fortunately, the high-throughput plant phenotyping platform (HT3P), employing advanced sensors and data collection systems, can take full advantage of non-destructive and high-throughput methods to monitor, quantify, and evaluate specific phenotypes for large-scale agricultural experiments, and it can effectively perform phenotypic tasks that traditional phenotyping could not do. In this way, HT3Ps are novel and powerful tools, for which various commercial, customized, and even self-developed ones have been recently introduced in rising numbers. Here, we review these HT3Ps in nearly 7 years from greenhouses and growth chambers to the field, and from ground-based proximal phenotyping to aerial large-scale remote sensing. Platform configurations, novelties, operating modes, current developments, as well the strengths and weaknesses of diverse types of HT3Ps are thoroughly and clearly described. Then, miscellaneous combinations of HT3Ps for comparative validation and comprehensive analysis are systematically present, for the first time. Finally, we consider current phenotypic challenges and provide fresh perspectives on future development trends of HT3Ps. This review aims to provide ideas, thoughts, and insights for the optimal selection, exploitation, and utilization of HT3Ps, and thereby pave the way to break through current phenotyping bottlenecks in botany.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
我是老大应助淡定的幼南采纳,获得10
1秒前
小刘发布了新的文献求助10
3秒前
5秒前
量子星尘发布了新的文献求助150
7秒前
梁小雨发布了新的文献求助10
8秒前
8秒前
清淮发布了新的文献求助10
9秒前
9秒前
小白完成签到,获得积分10
9秒前
10秒前
faithya发布了新的文献求助10
12秒前
ling完成签到 ,获得积分10
13秒前
孤独碧空完成签到,获得积分10
16秒前
快乐映秋发布了新的文献求助10
16秒前
DavidShaw发布了新的文献求助10
16秒前
DANNI发布了新的文献求助10
16秒前
有空完成签到,获得积分10
18秒前
陈蕴兮给陈蕴兮的求助进行了留言
18秒前
19秒前
wise111发布了新的文献求助10
20秒前
Zz发布了新的文献求助20
20秒前
冯广发布了新的文献求助10
21秒前
大模型应助liuliu采纳,获得10
21秒前
欠虐宝宝发布了新的文献求助10
21秒前
wxd发布了新的文献求助10
22秒前
heiehi完成签到,获得积分10
24秒前
实力与幸运并存完成签到,获得积分10
24秒前
25秒前
从容芮举报Jiangzhibing求助涉嫌违规
25秒前
无情的宛儿完成签到,获得积分10
25秒前
小二郎应助踏实依玉采纳,获得10
27秒前
有空发布了新的文献求助10
27秒前
31秒前
脑洞疼应助陆木子采纳,获得10
31秒前
量子星尘发布了新的文献求助10
32秒前
32秒前
Irenia发布了新的文献求助10
32秒前
JamesPei应助小鱼奈子采纳,获得10
33秒前
田様应助Zz采纳,获得10
33秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5114705
求助须知:如何正确求助?哪些是违规求助? 4321984
关于积分的说明 13467476
捐赠科研通 4153626
什么是DOI,文献DOI怎么找? 2275948
邀请新用户注册赠送积分活动 1277982
关于科研通互助平台的介绍 1215920