Evaluating meta-analytic methods to detect selective reporting in the presence of dependent effect sizes.

I类和II类错误 单变量 统计 荟萃分析 出版偏见 计量经济学 统计假设检验 统计能力 样本量测定 回归分析 数学 多元统计 置信区间 医学 内科学
作者
Melissa A. Rodgers,James E. Pustejovsky
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:26 (2): 141-160 被引量:260
标识
DOI:10.1037/met0000300
摘要

Selective reporting of results based on their statistical significance threatens the validity of meta-analytic findings. A variety of techniques for detecting selective reporting, publication bias, or small-study effects are available and are routinely used in research syntheses. Most such techniques are univariate, in that they assume that each study contributes a single, independent effect size estimate to the meta-analysis. In practice, however, studies often contribute multiple, statistically dependent effect size estimates, such as for multiple measures of a common outcome construct. Many methods are available for meta-analyzing dependent effect sizes, but methods for investigating selective reporting while also handling effect size dependencies require further investigation. Using Monte Carlo simulations, we evaluate three available univariate tests for small-study effects or selective reporting, including the trim and fill test, Egger's regression test, and a likelihood ratio test from a three-parameter selection model (3PSM), when dependence is ignored or handled using ad hoc techniques. We also examine two variants of Egger's regression test that incorporate robust variance estimation (RVE) or multilevel meta-analysis (MLMA) to handle dependence. Simulation results demonstrate that ignoring dependence inflates Type I error rates for all univariate tests. Variants of Egger's regression maintain Type I error rates when dependent effect sizes are sampled or handled using RVE or MLMA. The 3PSM likelihood ratio test does not fully control Type I error rates. With the exception of the 3PSM, all methods have limited power to detect selection bias except under strong selection for statistically significant effects. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魔幻的山兰完成签到,获得积分10
刚刚
oneonlycrown完成签到,获得积分10
刚刚
DALAN发布了新的文献求助10
2秒前
华仔应助lc采纳,获得10
3秒前
科研达人发布了新的文献求助10
3秒前
pluto应助科研通管家采纳,获得50
5秒前
打打应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
8秒前
8秒前
楠薏完成签到 ,获得积分10
9秒前
大模型应助李欣思采纳,获得10
9秒前
10秒前
10秒前
合适醉蝶完成签到 ,获得积分10
10秒前
CometF完成签到 ,获得积分10
11秒前
11秒前
Peggy完成签到,获得积分10
12秒前
南瓜完成签到,获得积分10
15秒前
自由水彤发布了新的文献求助10
15秒前
lc发布了新的文献求助10
15秒前
16秒前
tangz完成签到,获得积分20
16秒前
17秒前
18秒前
自由水彤完成签到,获得积分10
19秒前
EMT完成签到 ,获得积分10
19秒前
tangz发布了新的文献求助10
20秒前
上善若水完成签到 ,获得积分10
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783844
求助须知:如何正确求助?哪些是违规求助? 3329096
关于积分的说明 10239905
捐赠科研通 3044513
什么是DOI,文献DOI怎么找? 1671069
邀请新用户注册赠送积分活动 800142
科研通“疑难数据库(出版商)”最低求助积分说明 759192