Evaluating meta-analytic methods to detect selective reporting in the presence of dependent effect sizes.

I类和II类错误 单变量 统计 荟萃分析 出版偏见 计量经济学 统计假设检验 统计能力 样本量测定 回归分析 数学 多元统计 置信区间 医学 内科学
作者
Melissa A. Rodgers,James E. Pustejovsky
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:26 (2): 141-160 被引量:297
标识
DOI:10.1037/met0000300
摘要

Selective reporting of results based on their statistical significance threatens the validity of meta-analytic findings. A variety of techniques for detecting selective reporting, publication bias, or small-study effects are available and are routinely used in research syntheses. Most such techniques are univariate, in that they assume that each study contributes a single, independent effect size estimate to the meta-analysis. In practice, however, studies often contribute multiple, statistically dependent effect size estimates, such as for multiple measures of a common outcome construct. Many methods are available for meta-analyzing dependent effect sizes, but methods for investigating selective reporting while also handling effect size dependencies require further investigation. Using Monte Carlo simulations, we evaluate three available univariate tests for small-study effects or selective reporting, including the trim and fill test, Egger's regression test, and a likelihood ratio test from a three-parameter selection model (3PSM), when dependence is ignored or handled using ad hoc techniques. We also examine two variants of Egger's regression test that incorporate robust variance estimation (RVE) or multilevel meta-analysis (MLMA) to handle dependence. Simulation results demonstrate that ignoring dependence inflates Type I error rates for all univariate tests. Variants of Egger's regression maintain Type I error rates when dependent effect sizes are sampled or handled using RVE or MLMA. The 3PSM likelihood ratio test does not fully control Type I error rates. With the exception of the 3PSM, all methods have limited power to detect selection bias except under strong selection for statistically significant effects. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
源源发布了新的文献求助10
3秒前
3秒前
核桃应助纯情的水池采纳,获得30
3秒前
HY2024发布了新的文献求助10
4秒前
zch19970203发布了新的文献求助10
5秒前
快乐的白桃完成签到 ,获得积分10
5秒前
5秒前
喜哈哈发布了新的文献求助10
7秒前
7秒前
8秒前
ED应助聪慧的凝海采纳,获得10
10秒前
Jsc完成签到 ,获得积分10
10秒前
wangshuhong发布了新的文献求助10
11秒前
11秒前
麦田的守望者完成签到,获得积分10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
学习发布了新的文献求助10
14秒前
林希孟完成签到,获得积分10
14秒前
大个应助HY2024采纳,获得10
14秒前
15秒前
16秒前
lizhiqian2024发布了新的文献求助10
21秒前
科研通AI5应助jpc采纳,获得30
22秒前
向北完成签到,获得积分10
23秒前
地瓜叶完成签到,获得积分10
24秒前
xianyu完成签到,获得积分10
24秒前
儒雅的天川应助jiayou采纳,获得10
25秒前
25秒前
汉堡包应助她是姑娘采纳,获得10
25秒前
向北发布了新的文献求助20
26秒前
27秒前
Artin完成签到,获得积分10
28秒前
喜哈哈完成签到,获得积分10
28秒前
aaa发布了新的文献求助10
30秒前
NexusExplorer应助xianyu采纳,获得10
33秒前
33秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4234087
求助须知:如何正确求助?哪些是违规求助? 3767526
关于积分的说明 11836883
捐赠科研通 3425698
什么是DOI,文献DOI怎么找? 1879962
邀请新用户注册赠送积分活动 932713
科研通“疑难数据库(出版商)”最低求助积分说明 839783