Appointment Scheduling Under Time-Dependent Patient No-Show Behavior

地铁列车时刻表 模棱两可 计算机科学 数学优化 调度(生产过程) 集合(抽象数据类型) 服务(商务) 加班费 还原(数学) 运筹学 最优化问题 数学 经济 劳动经济学 程序设计语言 几何学 经济 操作系统
作者
Qingxia Kong,Shan Li,Nan Liu,Chung‐Piaw Teo,Zhenzhen Yan
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:66 (8): 3480-3500 被引量:78
标识
DOI:10.1287/mnsc.2019.3366
摘要

This paper studies how to schedule medical appointments with time-dependent patient no-show behavior and random service times. The problem is motivated by our studies of independent datasets from countries in two continents that unanimously identify a significant time-of-day effect on patient show-up probabilities. We deploy a distributionally robust model, which minimizes the worst-case total expected costs of patient waiting and service provider’s idling and overtime, by optimizing the scheduled arrival times of patients. This model is challenging because evaluating the total cost for a given schedule involves a linear program with uncertainties present in both the objective function and the right-hand side of the constraints. In addition, the ambiguity set considered contains discrete uncertainties and complementary functional relationships among these uncertainties (namely, patient no-shows and service durations). We show that when patient no-shows are exogenous (i.e., time-independent), the problem can be reformulated as a copositive program and then be approximated by semidefinite programs. When patient no-shows are endogenous on time (and hence on the schedule), the problem becomes a bilinear copositive program. We construct a set of dual prices to guide the search for a good schedule and use the technique iteratively to obtain a near-optimal solution. Our computational studies reveal a significant reduction in total expected cost by taking into account the time-of-day variation in patient show-up probabilities as opposed to ignoring it. This paper was accepted by David Simchi-Levi, optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gougou发布了新的文献求助10
刚刚
2秒前
zj发布了新的文献求助10
3秒前
过时的又槐完成签到,获得积分10
4秒前
4秒前
5秒前
科研通AI5应助柠檬加冰采纳,获得10
6秒前
6秒前
7秒前
8秒前
含蓄冬瓜完成签到,获得积分10
9秒前
9秒前
Tang完成签到,获得积分10
9秒前
9秒前
CipherSage应助简单代双采纳,获得10
10秒前
一帆风顺发布了新的文献求助10
10秒前
CodeCraft应助applelpypies采纳,获得10
10秒前
10秒前
11秒前
11秒前
shirelylee发布了新的文献求助10
11秒前
ZJX发布了新的文献求助10
12秒前
小药丸完成签到,获得积分10
13秒前
领导范儿应助少夫人采纳,获得10
13秒前
乐观婷关注了科研通微信公众号
13秒前
梁三岁发布了新的文献求助10
13秒前
爆米花应助魔幻秋烟采纳,获得10
13秒前
shihuili发布了新的文献求助10
13秒前
14秒前
15秒前
15秒前
15秒前
16秒前
王耀发布了新的文献求助10
16秒前
文静千凡发布了新的文献求助10
17秒前
17秒前
Kyle发布了新的文献求助10
17秒前
17秒前
彳亍而行完成签到,获得积分20
18秒前
18秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 200
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829678
求助须知:如何正确求助?哪些是违规求助? 3372298
关于积分的说明 10471502
捐赠科研通 3091858
什么是DOI,文献DOI怎么找? 1701479
邀请新用户注册赠送积分活动 818391
科研通“疑难数据库(出版商)”最低求助积分说明 770891