亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using machine learning to predict stroke‐associated pneumonia in Chinese acute ischaemic stroke patients

医学 接收机工作特性 冲程(发动机) 逻辑回归 改良兰金量表 缺血性中风 内科学 随机森林 肺炎 曲线下面积 机器学习 缺血性中风 人工智能 急诊医学 计算机科学 缺血 工程类 机械工程
作者
Xiang Li,Min Wu,Chao Sun,Zheng Zhao,F. Wang,Xueqian Zheng,Weihong Ge,Junshan Zhou,Jianjun Zou
出处
期刊:European Journal of Neurology [Wiley]
卷期号:27 (8): 1656-1663 被引量:41
标识
DOI:10.1111/ene.14295
摘要

Background and purpose Stroke‐associated pneumonia (SAP) is a common, severe but preventable complication after acute ischaemic stroke (AIS). Early identification of patients at high risk of SAP is especially necessary. However, previous prediction models have not been widely used in clinical practice. Thus, we aimed to develop a model to predict SAP in Chinese AIS patients using machine learning (ML) methods. Methods Acute ischaemic stroke patients were prospectively collected at the National Advanced Stroke Center of Nanjing First Hospital (China) between September 2016 and November 2019, and the data were randomly subdivided into a training set and a testing set. With the training set, five ML models (logistic regression with regulation, support vector machine, random forest classifier, extreme gradient boosting (XGBoost) and fully connected deep neural network) were developed. These models were assessed by the area under the curve of receiver operating characteristic on the testing set. Our models were also compared with pre‐stroke Independence (modified Rankin Scale), Sex, Age, National Institutes of Health Stroke Scale (ISAN) and Pneumonia Prediction (PNA) scores. Results A total of 3160 AIS patients were eventually included in this retrospective study. Among the five ML models, the XGBoost model performed best. The area under the curve of the XGBoost model on the testing set was 0.841 (sensitivity, 81.0%; specificity, 73.3%). It also achieved significantly better performance than ISAN and PNA scores. Conclusions Our study demonstrated that the XGBoost model with six common variables can predict SAP in Chinese AIS patients more optimally than ISAN and PNA scores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可爱的函函应助Carrido采纳,获得10
刚刚
2秒前
2秒前
柳行天完成签到 ,获得积分10
23秒前
34秒前
35秒前
CHEN完成签到 ,获得积分10
36秒前
传奇3应助广发牛勿采纳,获得10
36秒前
Carrido发布了新的文献求助10
39秒前
zzzzzzzzzzzzx发布了新的文献求助10
39秒前
44秒前
46秒前
guojingjing完成签到 ,获得积分10
52秒前
广发牛勿发布了新的文献求助10
53秒前
英姑应助Able采纳,获得10
1分钟前
1分钟前
科研通AI5应助调皮帆布鞋采纳,获得10
1分钟前
jtksbf完成签到,获得积分10
1分钟前
wiwia完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Tan完成签到,获得积分10
1分钟前
1分钟前
Tan发布了新的文献求助10
2分钟前
chenjzhuc完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Able发布了新的文献求助10
2分钟前
YUUNEEQUE完成签到,获得积分10
2分钟前
xyz发布了新的文献求助10
2分钟前
jyy应助科研通管家采纳,获得10
2分钟前
xyz完成签到,获得积分10
2分钟前
heqiujing发布了新的文献求助10
2分钟前
2分钟前
AiHaraNeko完成签到,获得积分10
2分钟前
SSS完成签到,获得积分10
2分钟前
酷波er应助zzzxh采纳,获得10
2分钟前
heqiujing完成签到,获得积分20
3分钟前
4分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Towards a spatial history of contemporary art in China 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843203
求助须知:如何正确求助?哪些是违规求助? 3385459
关于积分的说明 10540536
捐赠科研通 3106072
什么是DOI,文献DOI怎么找? 1710846
邀请新用户注册赠送积分活动 823778
科研通“疑难数据库(出版商)”最低求助积分说明 774264