清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Performance prediction and design optimization of turbine blade profile with deep learning method

计算机科学 刀(考古) 涡轮叶片 涡轮机 工程类 海洋工程 机械工程
作者
Qiuwan Du,Yunzhu Li,Like Yang,Tianyuan Liu,Di Zhang,Yonghui Xie
出处
期刊:Energy [Elsevier BV]
卷期号:254: 124351-124351 被引量:45
标识
DOI:10.1016/j.energy.2022.124351
摘要

Aerodynamic design optimization of the blade profile is a critical approach to improve performance of turbomachinery. This paper aims to achieve the performance prediction with deep learning method and realize fast design optimization of a turbine blade. Two parameterization methods based on geometric relationships (PGR) and neural network (PNN) are proposed, which can generate smooth and complete blade profiles. A dual convolutional neural network (DCNN) is constructed to predict the physical fields and aerodynamic performance. The implementations of DCNN are accomplished based on the datasets generated by the two parameterization methods respectively, which are called PGR-DCNN and PNN-DCNN model. Results show that the prediction accuracy increases and then keeps stable as train size increases. The two models can offer the detailed physical field distribution within 3 ms and accurately predict the aerodynamic performance. The prediction errors of performance parameters for 99% samples in validation set are less than 0.5% with PGR-DCNN model, which are significantly better than conventional machine learning methods. Finally, based on the accurate predictive models, the gradient-based design optimization for rotor blade profile is completed in 38 s. The efficiency of the two optimal blades reaches 89.29% and 88.92% respectively, which verifies the feasibility of our method. • Two parameterization methods based on geometric relationships and neural network are proposed. • The DCNN model is constructed to reconstruct physical fields and predict performance. • High prediction accuracy and fast calculation speed are achieved by DCNN model. • The gradient descent method is adopted to conduct the optimization of the turbine blade profile.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
整齐百褶裙完成签到 ,获得积分10
1秒前
jailbreaker完成签到 ,获得积分10
2秒前
huangzsdy完成签到,获得积分10
3秒前
6秒前
萨尔莫斯发布了新的文献求助10
11秒前
打打应助王博士采纳,获得10
14秒前
Ava应助萨尔莫斯采纳,获得10
27秒前
缥缈的闭月完成签到,获得积分10
27秒前
阳光的道消完成签到,获得积分10
34秒前
友好羊应助尤瑟夫采纳,获得30
36秒前
37秒前
王博士发布了新的文献求助10
40秒前
归尘应助科研通管家采纳,获得30
44秒前
cdercder应助科研通管家采纳,获得10
44秒前
cdercder应助科研通管家采纳,获得10
44秒前
cdercder应助科研通管家采纳,获得10
44秒前
laber完成签到,获得积分10
1分钟前
小蘑菇应助王博士采纳,获得10
1分钟前
蔡勇强完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
王博士发布了新的文献求助10
1分钟前
自律发布了新的文献求助10
1分钟前
1分钟前
萨尔莫斯发布了新的文献求助10
1分钟前
pjxxx完成签到 ,获得积分10
1分钟前
arsenal完成签到 ,获得积分10
1分钟前
susan完成签到 ,获得积分10
1分钟前
zhdjj完成签到 ,获得积分10
1分钟前
东风完成签到,获得积分10
1分钟前
英姑应助王博士采纳,获得10
1分钟前
jenningseastera应助萨尔莫斯采纳,获得10
1分钟前
zhuosht完成签到 ,获得积分10
1分钟前
2分钟前
白桃乌龙完成签到,获得积分10
2分钟前
王博士发布了新的文献求助10
2分钟前
不倦应助萨尔莫斯采纳,获得10
2分钟前
naiyouqiu1989完成签到,获得积分10
2分钟前
九五式自动步枪完成签到 ,获得积分10
2分钟前
欧阳娜娜完成签到 ,获得积分10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780865
求助须知:如何正确求助?哪些是违规求助? 3326359
关于积分的说明 10226680
捐赠科研通 3041524
什么是DOI,文献DOI怎么找? 1669502
邀请新用户注册赠送积分活动 799075
科研通“疑难数据库(出版商)”最低求助积分说明 758732