FR-GAN: A self-supervised learning method for super-resolution reconstruction of optical remote sensing images

人工智能 计算机科学 计算机视觉 迭代重建 图像复原 图像纹理 特征(语言学) 图像(数学) 模式识别(心理学) 图像处理 语言学 哲学
作者
Hai-Feng Zhong,Hong-Mei Sun,Rui-Sheng Jia,Qi Zhang
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:16 (02) 被引量:1
标识
DOI:10.1117/1.jrs.16.026509
摘要

Aiming at the problem of object blur in optical remote sensing images caused by atmospheric disturbance and cloud disturbance, a remote sensing image super-resolution reconstruction network, namely feature-enhanced reconstruction generative adversarial network (FR-GAN), based on a generative confrontation structure is proposed. The network adopts a self-supervised learning mode to achieve high-quality image reconstruction by learning the characteristics of the reconstructed image. First, to simulate the blurring effect of remote sensing images affected by interference factors, Gaussian noise is introduced into the image degradation model of self-supervised learning. Second, a background information enhancement module is designed in the FR-GAN image generator, which solves the problem of blurred objects in the reconstructed image by extracting the background contour information of the image and enhancing its expressive ability. Finally, the relative loss and perceptual loss are used to construct the loss function of FR-GAN. On the one hand, it improves the stability of the training process, and on the other hand, it improves the quality of image detail texture reconstruction. The experimental results show that, compared with the existing super-resolution reconstruction networks, the image reconstructed by FR-GAN has a clear texture, rich details, and better subjective visual effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY完成签到,获得积分10
刚刚
刚刚
1秒前
调皮以寒完成签到,获得积分10
2秒前
酷波er应助迷路的硬币采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
张星星完成签到 ,获得积分10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
一一应助科研通管家采纳,获得100
4秒前
pluto应助科研通管家采纳,获得20
4秒前
827584450应助科研通管家采纳,获得10
4秒前
4秒前
可爱的函函应助cloudy采纳,获得10
6秒前
Nothing完成签到,获得积分20
7秒前
汉堡包应助云136采纳,获得10
7秒前
汉堡包应助赵创采纳,获得10
7秒前
LHL关闭了LHL文献求助
7秒前
欣慰冬亦发布了新的文献求助10
7秒前
xiexie发布了新的文献求助10
7秒前
8秒前
灭亡完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
朴实的一兰完成签到,获得积分20
11秒前
完美世界应助拉长的念露采纳,获得10
11秒前
15秒前
YY发布了新的文献求助10
15秒前
Nothing发布了新的文献求助10
15秒前
leecarp完成签到,获得积分10
15秒前
16秒前
18秒前
20秒前
21秒前
surgeon慧完成签到,获得积分10
21秒前
23秒前
Tao关闭了Tao文献求助
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787261
求助须知:如何正确求助?哪些是违规求助? 3332885
关于积分的说明 10257979
捐赠科研通 3048284
什么是DOI,文献DOI怎么找? 1673053
邀请新用户注册赠送积分活动 801616
科研通“疑难数据库(出版商)”最低求助积分说明 760287