Communicative Subgraph Representation Learning for Multi-Relational Inductive Drug-Gene Interaction Prediction

计算机科学 药物数据库 人工智能 机器学习 代表(政治) 水准点(测量) 药物靶点 关系(数据库)
作者
Rao, Jiahua,Zheng, Shuangjia,Mai, Sijie,Yang, Yuedong
标识
DOI:10.24963/ijcai.2022/541
摘要

Illuminating the interconnections between drugs and genes is an important topic in drug development and precision medicine. Currently, computational predictions of drug-gene interactions mainly focus on the binding interactions without considering other relation types like agonist, antagonist, etc. In addition, existing methods either heavily rely on high-quality domain features or are intrinsically transductive, which limits the capacity of models to generalize to drugs/genes that lack external information or are unseen during the training process. To address these problems, we propose a novel Communicative Subgraph representation learning for Multi-relational Inductive drug-Gene interactions prediction (CoSMIG), where the predictions of drug-gene relations are made through subgraph patterns, and thus are naturally inductive for unseen drugs/genes without retraining or utilizing external domain features. Moreover, the model strengthened the relations on the drug-gene graph through a communicative message passing mechanism. To evaluate our method, we compiled two new benchmark datasets from DrugBank and DGIdb. The comprehensive experiments on the two datasets showed that our method outperformed state-of-the-art baselines in the transductive scenarios and achieved superior performance in the inductive ones. Further experimental analysis including LINCS experimental validation and literature verification also demonstrated the value of our model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xx完成签到,获得积分10
刚刚
小蘑菇应助tyxyt采纳,获得10
刚刚
在水一方应助失眠的以蓝采纳,获得10
1秒前
从容傲柏完成签到,获得积分10
1秒前
Lingkoi完成签到,获得积分10
1秒前
mtl关注了科研通微信公众号
1秒前
花川完成签到 ,获得积分10
1秒前
xkxkii完成签到,获得积分10
2秒前
2秒前
路越发布了新的文献求助10
2秒前
3秒前
3秒前
kanglan发布了新的文献求助10
4秒前
CipherSage应助joy采纳,获得10
4秒前
小蘑菇应助精明依云采纳,获得10
4秒前
三水完成签到,获得积分20
4秒前
bkagyin应助蝉鸣采纳,获得10
5秒前
6秒前
6秒前
6秒前
7秒前
虚幻梦寒完成签到,获得积分10
7秒前
还单身的谷菱完成签到,获得积分10
7秒前
学术讨口子完成签到 ,获得积分10
7秒前
岳凯完成签到,获得积分10
8秒前
9秒前
9秒前
19205100313发布了新的文献求助10
9秒前
YanDongXu发布了新的文献求助10
10秒前
tyxyt完成签到,获得积分10
10秒前
上官若男应助2hi采纳,获得10
11秒前
11秒前
11秒前
奈布完成签到 ,获得积分10
12秒前
无辜秋珊发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
打打应助美好斓采纳,获得10
13秒前
余冲发布了新的文献求助10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
Global Eyelash Assessment scale (GEA) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4031362
求助须知:如何正确求助?哪些是违规求助? 3570166
关于积分的说明 11360509
捐赠科研通 3300617
什么是DOI,文献DOI怎么找? 1817102
邀请新用户注册赠送积分活动 891343
科研通“疑难数据库(出版商)”最低求助积分说明 814170