A canopy photosynthesis model based on a highly generalizable artificial neural network incorporated with a mechanistic understanding of single-leaf photosynthesis

天蓬 叶面积指数 经验模型 光合作用 环境科学 人工神经网络 光合有效辐射 计算机科学 生物系统 人工智能 生态学 植物 生物 模拟
作者
Takahiro Kondo,Kazuko H. Nomura,Daisuke Yasutake,Tadashige Iwao,Takashi Okayasu,Yukio Ozaki,Masato Mori,Tomoyoshi Hirota,Masaharu Kitano
出处
期刊:Agricultural and Forest Meteorology [Elsevier BV]
卷期号:323: 109036-109036 被引量:11
标识
DOI:10.1016/j.agrformet.2022.109036
摘要

Crop productivity is largely dependent on canopy photosynthesis, which is difficult to measure at farming sites. Therefore, real-time estimation of the canopy photosynthetic rate (Ac) is expected to facilitate effective farm management. For the estimation of Ac, two types of mathematical models (i.e., process-based models and empirical models) have been used, although both types have their own weaknesses. Process-based models inevitably require many model parameters that are difficult to identify, while empirical models, including artificial neural network (ANN) models, have a low predictive ability outside of the range of training datasets. To overcome these weaknesses, we developed a hybrid canopy photosynthesis model that included components of both process-based models and ANN models. In this hybrid model, the single-leaf photosynthetic rate (AL) and leaf area index (LAI) were first estimated from information easily obtainable at farming sites: AL was estimated by the process-based model of AL (i.e., the biochemical photosynthesis model of Farquhar et al. (1980)) from environmental data (photosynthetic photon flux density (PPFD), air temperature (Ta), humidity, and atmospheric CO2 concentration (Ca)), and the LAI was estimated by an analysis of crop canopy imagery. As highly explainable information for Ac, the estimated AL and LAI were input into the ANN model to estimate Ac. As such, the ANN model learned the logical relationships between the inputs (AL and LAI) and the output (Ac). Detailed validation analysis using nine spinach Ac datasets revealed that the hybrid ANN model can estimate Ac accurately throughout the whole growth period, even when training and test datasets were obtained in different seasons under different CO2 concentrations and based on training datasets of only three days. This study highlights the high generalizability of the hybrid ANN model, which is a prerequisite for practical application in environmentally controlled crop production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
memory完成签到,获得积分10
刚刚
su完成签到 ,获得积分10
3秒前
Hester完成签到,获得积分10
4秒前
不会失忆完成签到,获得积分10
5秒前
5秒前
6秒前
渡怜芸完成签到 ,获得积分10
9秒前
Alex发布了新的文献求助10
12秒前
科研通AI5应助中中会发光采纳,获得10
13秒前
15秒前
刘小源完成签到 ,获得积分10
18秒前
ShiRz发布了新的文献求助10
19秒前
19秒前
22秒前
不会学术的羊完成签到,获得积分10
24秒前
紫琉花雨完成签到 ,获得积分10
24秒前
25秒前
26秒前
gomm完成签到,获得积分10
27秒前
28秒前
学术蠕虫发布了新的文献求助10
29秒前
qiao完成签到,获得积分10
30秒前
火星的雪完成签到 ,获得积分10
32秒前
淡定可乐发布了新的文献求助10
33秒前
xxx7749发布了新的文献求助10
33秒前
33秒前
天天向上完成签到 ,获得积分10
34秒前
迷路曼雁完成签到,获得积分10
35秒前
35秒前
852应助科研通管家采纳,获得10
36秒前
丘比特应助科研通管家采纳,获得10
36秒前
乐乐应助科研通管家采纳,获得10
36秒前
帅气的宽完成签到 ,获得积分10
36秒前
yangl发布了新的文献求助10
42秒前
43秒前
学术蠕虫完成签到,获得积分20
43秒前
47秒前
萧瑟处完成签到,获得积分10
49秒前
50秒前
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781213
求助须知:如何正确求助?哪些是违规求助? 3326729
关于积分的说明 10228166
捐赠科研通 3041776
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799118
科研通“疑难数据库(出版商)”最低求助积分说明 758751