Recent Advances in Machine Learning Research for Nanofluid-Based Heat Transfer in Renewable Energy System

纳米流体 计算机科学 可再生能源 人工智能 机器学习 人工神经网络 传热 工艺工程 工程类 物理 电气工程 热力学
作者
Prabhakar Sharma,Zafar Said,Anurag Kumar,Sandro Nižetić,Ashok Pandey,Anh Tuan Hoang,Zuohua Huang,Asif Afzal,Changhe Li,Lê Anh Tuấn,Xuân Phương Nguyễn,Việt Dũng Trần
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:36 (13): 6626-6658 被引量:263
标识
DOI:10.1021/acs.energyfuels.2c01006
摘要

Nanofluids have gained significant popularity in the field of sustainable and renewable energy systems. The heat transfer capacity of the working fluid has a huge impact on the efficiency of the renewable energy system. The addition of a small amount of high thermal conductivity solid nanoparticles to a base fluid improves heat transfer. Even though a large amount of research data is available in the literature, some results are contradictory. Many influencing factors, as well as nonlinearity and refutations, make nanofluid research highly challenging and obstruct its potentially valuable uses. On the other hand, data-driven machine learning techniques would be very useful in nanofluid research for forecasting thermophysical features and heat transfer rate, identifying the most influential factors, and assessing the efficiencies of different renewable energy systems. The primary aim of this review study is to look at the features and applications of different machine learning techniques employed in the nanofluid-based renewable energy system, as well as to reveal new developments in machine learning research. A variety of modern machine learning algorithms for nanofluid-based heat transfer studies in renewable and sustainable energy systems are examined, along with their advantages and disadvantages. Artificial neural networks-based model prediction using contemporary commercial software is simple to develop and the most popular. The prognostic capacity may be further improved by combining a marine predator algorithm, genetic algorithm, swarm intelligence optimization, and other intelligent optimization approaches. In addition to the well-known neural networks and fuzzy- and gene-based machine learning techniques, newer ensemble machine learning techniques such as Boosted regression techniques, K-means, K-nearest neighbor (KNN), CatBoost, and XGBoost are gaining popularity due to their improved architectures and adaptabilities to diverse data types. The regularly used neural networks and fuzzy-based algorithms are mostly black-box methods, with the user having little or no understanding of how they function. This is the reason for concern, and ethical artificial intelligence is required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研南发布了新的文献求助10
1秒前
safari完成签到 ,获得积分10
3秒前
默默的化蛹完成签到,获得积分10
4秒前
4秒前
Curry完成签到 ,获得积分10
7秒前
烟花应助默默的化蛹采纳,获得10
7秒前
7秒前
尉迟十八完成签到,获得积分10
8秒前
李李李完成签到 ,获得积分10
8秒前
9秒前
万能图书馆应助灶鲜森采纳,获得10
9秒前
9秒前
wslingling完成签到,获得积分20
10秒前
壮观的寒松完成签到,获得积分10
10秒前
不要困完成签到,获得积分10
10秒前
文龙完成签到,获得积分10
11秒前
11秒前
zhangrunbin123完成签到,获得积分20
14秒前
嘻嘻哈哈应助和谐的破茧采纳,获得10
15秒前
果冻完成签到 ,获得积分10
15秒前
15秒前
糊涂生活糊涂过完成签到 ,获得积分10
16秒前
tzj发布了新的文献求助10
16秒前
17秒前
zxcharm完成签到,获得积分10
17秒前
踏实哈密瓜完成签到,获得积分10
18秒前
乐乐应助wslingling采纳,获得10
19秒前
星辰完成签到,获得积分10
19秒前
sophiemore完成签到,获得积分10
19秒前
19秒前
大模型应助llw采纳,获得10
20秒前
尤小玉发布了新的文献求助10
21秒前
22秒前
hhhhhhhhhh完成签到 ,获得积分10
24秒前
24秒前
ghghkhh完成签到,获得积分10
24秒前
24秒前
热心的诗筠完成签到,获得积分20
24秒前
飞行的子弹完成签到,获得积分20
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305794
求助须知:如何正确求助?哪些是违规求助? 4451756
关于积分的说明 13853101
捐赠科研通 4339264
什么是DOI,文献DOI怎么找? 2382461
邀请新用户注册赠送积分活动 1377460
关于科研通互助平台的介绍 1345074