CoCycleReg: Collaborative cycle-consistency method for multi-modal medical image registration

计算机科学 图像配准 一致性(知识库) 情态动词 人工智能 图像(数学) 计算机视觉 材料科学 高分子化学
作者
Chenyu Lian,Xiaomeng Li,Lingke Kong,Jiacheng Wang,Wei Zhang,Xiaoyang Huang,Liansheng Wang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:500: 799-808 被引量:18
标识
DOI:10.1016/j.neucom.2022.05.113
摘要

Multi-modal image registration is an essential step for many medical image analysis applications. Recent advances in multi-modal image registration rely on image-to-image translation to achieve good performance. However, the performance is still limited owing to the poor use of complementary regularization between image registration and translation, which is able to simultaneously enhance both parts’ accuracy. To this end, we propose CoCycleReg, a novel method that formulates image registration and translation in a Collaborative Cycle-consistency manner. Instead of dividing into two discrete stages, we unify the image registration and translation via cycle-consistency in an end-to-end training process, such that each part can benefit from the other one. To ensure the deformation fields’ reversibility in the cycle, we extensively introduce a novel dual-head registration network, consisting of one single backbone to extract the features and two heads to respectively predict the deformation fields. The experiments on T1-T2(MRI) and CT-MRI datasets validate that the proposed CoCycleReg surpasses the other state-of-the-art conventional and deep learning approaches comprehensively considering the speed, accuracy, and regularity of deformation fields. In the ablation analysis, a method that sets the cycle-consistency Corresponding authors at: Department of Computer Science at School of Informatics, Xiamen University, Xiamen 361005, Chinaconstraints of registration and image-to-image translation separately is compared, and the results demonstrate the effectiveness of collaborative cycle-consistency. In addition, the improvement of image-to-image translation is also verified in further analysis. The code is publicly available at https://github.com/DopamineLcy/cocycle-reg/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
刚刚
藏獒完成签到,获得积分10
3秒前
4秒前
大群发布了新的文献求助10
4秒前
5秒前
8秒前
9秒前
10秒前
珂颜堂AI应助拉长的灵阳采纳,获得100
13秒前
哒哒哒发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
An22发布了新的文献求助40
17秒前
SciGPT应助健康的幻珊采纳,获得10
20秒前
刘帅帅完成签到,获得积分10
21秒前
无花果应助哒哒哒采纳,获得10
21秒前
馒头发布了新的文献求助10
22秒前
22秒前
23秒前
23秒前
小猪完成签到 ,获得积分10
24秒前
nayogi完成签到 ,获得积分10
25秒前
古月发布了新的文献求助10
25秒前
25秒前
yulong完成签到 ,获得积分10
25秒前
英俊的铭应助123采纳,获得10
26秒前
26秒前
26秒前
沐沐发布了新的文献求助10
26秒前
yaooo发布了新的文献求助10
28秒前
28秒前
Nnn发布了新的文献求助10
30秒前
30秒前
xiaokai发布了新的文献求助10
31秒前
哎呦喂发布了新的文献求助10
31秒前
34秒前
ww完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4314526
求助须知:如何正确求助?哪些是违规求助? 3833816
关于积分的说明 11993453
捐赠科研通 3474012
什么是DOI,文献DOI怎么找? 1905087
邀请新用户注册赠送积分活动 951743
科研通“疑难数据库(出版商)”最低求助积分说明 853299