Rapid Screening Using Pathomorphologic Interpretation to Detect BRAFV600E Mutation and Microsatellite Instability in Colorectal Cancer

微卫星不稳定性 克拉斯 结直肠癌 医学 癌症 病理 突变 放射科 内科学 肿瘤科 微卫星 基因 生物 遗传学 等位基因
作者
Satoshi Fujii,Daisuke Kotani,Masahiro Hattori,Masato Nishihara,Toshihide Shikanai,Junji Hashimoto,Yuki Hama,Takuya Nishino,Mizuto Suzuki,Ayatoshi Yoshidumi,Makoto Ueno,Yoshito Komatsu,Toshiki Masuishi,Hiroki Hara,Taito Esaki,Yoshiaki Nakamura,Hideaki Bando,Tomoyuki Yamada,Takayuki Yoshino
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:28 (12): 2623-2632 被引量:9
标识
DOI:10.1158/1078-0432.ccr-21-4391
摘要

Abstract Purpose: Rapid decision-making is essential in precision medicine for initiating molecular targeted therapy for patients with cancer. This study aimed to extract pathomorphologic features that enable the accurate prediction of genetic abnormalities in cancer from hematoxylin and eosin images using deep learning (DL). Experimental Design: A total of 1,657 images (one representative image per patient) of thin formalin-fixed, paraffin-embedded tissue sections from either primary or metastatic tumors with next-generation sequencing–confirmed genetic abnormalities—including BRAFV600E and KRAS mutations, and microsatellite instability high (MSI-H)—that are directly relevant to therapeutic strategies for advanced colorectal cancer were obtained from the nationwide SCRUM-Japan GI-SCREEN project. The images were divided into three groups of 986, 248, and 423 images to create one training and two validation cohorts, respectively. Pathomorphologic feature-prediction DL models were first developed on the basis of pathomorphologic features. Subsequently, gene-prediction DL models were constructed for all possible combinations of pathomorphologic features that enabled the prediction of gene abnormalities based on images filtered by the combination of pathomorphologic feature-prediction models. Results: High accuracies were achieved, with AUCs > 0.90 and 0.80 for 12 and 27, respectively, of 33 analyzed pathomorphologic features, with high AUCs being yielded for both BRAFV600E (0.851 and 0.859) and MSI-H (0.923 and 0.862). Conclusions: These findings show that novel next-generation pathology methods can predict genetic abnormalities without the need for standard-of-care gene tests, and this novel next-generation pathology method can be applied for colorectal cancer treatment planning in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助dyd采纳,获得30
2秒前
52pry发布了新的文献求助10
4秒前
6秒前
6秒前
7秒前
科研通AI5应助Guyiru采纳,获得10
8秒前
11秒前
jiadi完成签到 ,获得积分10
11秒前
12秒前
12秒前
jzyy发布了新的文献求助10
13秒前
14秒前
勤奋的如松完成签到,获得积分10
15秒前
15秒前
ZHou发布了新的文献求助10
15秒前
YUUNEEQUE完成签到,获得积分10
16秒前
chen完成签到,获得积分10
16秒前
Landau发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
疯狂的迪子完成签到 ,获得积分10
18秒前
pluto应助Ryan采纳,获得50
18秒前
chen发布了新的文献求助10
19秒前
开放的初曼完成签到,获得积分20
21秒前
大憨憨完成签到 ,获得积分10
21秒前
鞘皮发布了新的文献求助10
22秒前
CCY777发布了新的文献求助10
22秒前
范月月完成签到 ,获得积分10
22秒前
快乐小狗完成签到 ,获得积分10
23秒前
啵妞完成签到 ,获得积分10
23秒前
dyd发布了新的文献求助30
23秒前
谢傲安发布了新的文献求助10
23秒前
qqy完成签到,获得积分10
26秒前
gsj完成签到 ,获得积分10
27秒前
小天狼星完成签到,获得积分10
27秒前
28秒前
科研通AI2S应助Leyan采纳,获得10
28秒前
小蘑菇应助科研通管家采纳,获得10
30秒前
所所应助科研通管家采纳,获得10
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781132
求助须知:如何正确求助?哪些是违规求助? 3326623
关于积分的说明 10227813
捐赠科研通 3041744
什么是DOI,文献DOI怎么找? 1669585
邀请新用户注册赠送积分活动 799104
科研通“疑难数据库(出版商)”最低求助积分说明 758751