Artificial intelligence to bring nanomedicine to life

纳米医学 计算机科学 吞吐量 合理设计 纳米技术 风险分析(工程) 人工智能 数据科学 医学 电信 材料科学 纳米颗粒 无线
作者
Nikita Serov,Vladimir V. Vinogradov
出处
期刊:Advanced Drug Delivery Reviews [Elsevier]
卷期号:184: 114194-114194 被引量:153
标识
DOI:10.1016/j.addr.2022.114194
摘要

The technology of drug delivery systems (DDSs) has demonstrated an outstanding performance and effectiveness in production of pharmaceuticals, as it is proved by many FDA-approved nanomedicines that have an enhanced selectivity, manageable drug release kinetics and synergistic therapeutic actions. Nonetheless, to date, the rational design and high-throughput development of nanomaterial-based DDSs for specific purposes is far from a routine practice and is still in its infancy, mainly due to the limitations in scientists' capabilities to effectively acquire, analyze, manage, and comprehend complex and ever-growing sets of experimental data, which is vital to develop DDSs with a set of desired functionalities. At the same time, this task is feasible for the data-driven approaches, high throughput experimentation techniques, process automatization, artificial intelligence (AI) technology, and machine learning (ML) approaches, which is referred to as The Fourth Paradigm of scientific research. Therefore, an integration of these approaches with nanomedicine and nanotechnology can potentially accelerate the rational design and high-throughput development of highly efficient nanoformulated drugs and smart materials with pre-defined functionalities. In this Review, we survey the important results and milestones achieved to date in the application of data science, high throughput, as well as automatization approaches, combined with AI and ML to design and optimize DDSs and related nanomaterials. This manuscript mission is not only to reflect the state-of-art in data-driven nanomedicine, but also show how recent findings in the related fields can transform the nanomedicine's image. We discuss how all these results can be used to boost nanomedicine translation to the clinic, as well as highlight the future directions for the development, data-driven, high throughput experimentation-, and AI-assisted design, as well as the production of nanoformulated drugs and smart materials with pre-defined properties and behavior. This Review will be of high interest to the chemists involved in materials science, nanotechnology, and DDSs development for biomedical applications, although the general nature of the presented approaches enables knowledge translation to many other fields of science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陆陆完成签到 ,获得积分10
刚刚
lsl应助积极的向松采纳,获得40
1秒前
Gumiano发布了新的文献求助10
1秒前
1秒前
小黄完成签到 ,获得积分10
2秒前
家秋白发布了新的文献求助10
3秒前
4秒前
Tonson完成签到,获得积分10
4秒前
5秒前
6秒前
mmuoo完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
10秒前
希夷发布了新的文献求助10
10秒前
10秒前
0000完成签到 ,获得积分10
13秒前
15秒前
16秒前
搜集达人应助安静曼云采纳,获得10
17秒前
追寻完成签到,获得积分10
18秒前
轨迹应助积极的向松采纳,获得10
19秒前
f1sh完成签到,获得积分10
23秒前
23秒前
26秒前
李爱国应助时尚的大开采纳,获得10
26秒前
橘子完成签到 ,获得积分10
27秒前
兮兮完成签到 ,获得积分10
28秒前
30秒前
33秒前
lesyeuxdexx完成签到 ,获得积分10
35秒前
木流留马发布了新的文献求助10
37秒前
37秒前
38秒前
科研通AI6应助懒大王采纳,获得30
38秒前
38秒前
38秒前
ZJING9发布了新的文献求助10
39秒前
轨迹应助积极的向松采纳,获得30
39秒前
cheng发布了新的文献求助10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643988
求助须知:如何正确求助?哪些是违规求助? 4762596
关于积分的说明 15023101
捐赠科研通 4802241
什么是DOI,文献DOI怎么找? 2567372
邀请新用户注册赠送积分活动 1525073
关于科研通互助平台的介绍 1484595