Ultrahigh augmentation of flexible composite-based piezoelectric energy harvesting efficiency via polymer-impregnated nanoparticles network within 3D cellulose scaffold

能量收集 材料科学 脚手架 纤维素 压电 复合数 制作 陶瓷 压电传感器 复合材料 功率(物理) 计算机科学 工程类 化学工程 医学 替代医学 病理 物理 量子力学 数据库
作者
Hongjian Zhang,Chang Kyu Jeong,Zhonghui Shen,Jian Wang,Huajun Sun,Zelang Jian,Wen Chen,Yong Zhang
出处
期刊:Composites Part B-engineering [Elsevier]
卷期号:236: 109813-109813 被引量:35
标识
DOI:10.1016/j.compositesb.2022.109813
摘要

In the past decade, many flexible piezoelectric energy harvesters (PEHs) that can convert ambient mechanical energy into electrical energy have been developed, which provides a sustainable power source for wearable/implantable devices and Internet of Things (IoTs) applications. However, the performance of flexible composite-type PEHs should be further optimized to meet the standard for future practical applications. Herein, we present a powerful strategy for high-performance piezoelectric energy harvesting with poly(vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE))-impregnated BaTiO3 nanoparticles network within 3-dimensional (3D) cellulose scaffold. We propose three methodologies to precisely adjust the microscopic morphology of the organic-inorganic hybrid piezoelectric composites. The construction of methyl cellulose scaffold results in effective stress transfer with high mechanical flexibility as well as dramatically enhanced energy harvesting output. When the cellulose content is 3 wt%, the optimal energy harvesting performance is obtained, which shows the power density of 42 μW/cm3, which is nearly 800% higher than that of the conventional flexible piezoelectric composites previously reported. Throughout the finite-element simulation and mechanical property quantification, the highly augmented energy harvesting capability of our optimal composite structure is determined to stem from the stress-enforced characteristics. Given the ease of fabrication and scalability, this work opens up the way for the development of flexible and high-performance energy harvesting applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
DAI完成签到,获得积分10
3秒前
heqiongqiong完成签到,获得积分20
3秒前
隐形曼青应助lulu采纳,获得10
4秒前
无糖零脂完成签到,获得积分10
4秒前
5秒前
5秒前
CodeCraft应助山槐采纳,获得10
6秒前
6秒前
6秒前
7秒前
jason93发布了新的文献求助10
7秒前
大方念云完成签到 ,获得积分10
7秒前
7秒前
7秒前
高高发布了新的文献求助10
8秒前
zyzy完成签到,获得积分10
9秒前
楠瓜完成签到,获得积分10
11秒前
12秒前
追寻复天发布了新的文献求助10
13秒前
13秒前
Lucas应助闵松岳采纳,获得10
14秒前
Hello应助MORNING采纳,获得10
14秒前
思源应助4qfguj采纳,获得10
15秒前
浮游应助123采纳,获得10
15秒前
jason93完成签到,获得积分10
15秒前
苏苏苏完成签到,获得积分10
16秒前
16秒前
无花果应助乌薛宇采纳,获得10
16秒前
17秒前
17秒前
苏苏苏发布了新的文献求助10
18秒前
19秒前
lulu发布了新的文献求助10
20秒前
20秒前
龙龙龙发布了新的文献求助10
21秒前
21秒前
23秒前
23秒前
丘比特应助勤劳傲安采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5296986
求助须知:如何正确求助?哪些是违规求助? 4445980
关于积分的说明 13837948
捐赠科研通 4331070
什么是DOI,文献DOI怎么找? 2377432
邀请新用户注册赠送积分活动 1372677
关于科研通互助平台的介绍 1338246