等变映射
计算机科学
不变(物理)
人工神经网络
代表(政治)
从头算
集合(抽象数据类型)
统计物理学
理论计算机科学
算法
人工智能
物理
量子力学
数学
法学
纯数学
政治
程序设计语言
政治学
作者
Simon Batzner,Albert Musaelian,Lixin Sun,Mario Geiger,Jonathan P. Mailoa,Mordechai Kornbluth,Nicola Molinari,Tess Smidt,Boris Kozinsky
标识
DOI:10.1038/s41467-022-29939-5
摘要
Abstract This work presents Neural Equivariant Interatomic Potentials (NequIP), an E(3)-equivariant neural network approach for learning interatomic potentials from ab-initio calculations for molecular dynamics simulations. While most contemporary symmetry-aware models use invariant convolutions and only act on scalars, NequIP employs E(3)-equivariant convolutions for interactions of geometric tensors, resulting in a more information-rich and faithful representation of atomic environments. The method achieves state-of-the-art accuracy on a challenging and diverse set of molecules and materials while exhibiting remarkable data efficiency. NequIP outperforms existing models with up to three orders of magnitude fewer training data, challenging the widely held belief that deep neural networks require massive training sets. The high data efficiency of the method allows for the construction of accurate potentials using high-order quantum chemical level of theory as reference and enables high-fidelity molecular dynamics simulations over long time scales.
科研通智能强力驱动
Strongly Powered by AbleSci AI