Visual recognition of cherry tomatoes in plant factory based on improved deep instance segmentation

人工智能 RGB颜色模型 模式识别(心理学) 分割 子网 联营 特征(语言学) 计算机科学 约束(计算机辅助设计) 计算机视觉 数学 计算机安全 语言学 哲学 几何学
作者
Penghui Xu,Nan Fang,Na Liu,Fengshan Lin,Shuqin Yang,Jifeng Ning
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:197: 106991-106991 被引量:58
标识
DOI:10.1016/j.compag.2022.106991
摘要

Accurate recognition of cherry tomatoes is a key issue for the automatic picking system in plant factories, which helps to improve picking efficiency and reduce production costs. By using the depth information and considering the prior adjacent constraint between the fruit and the stem of cherry tomatoes, this paper proposes an improved Mask R-CNN for visual recognition of cherry tomatoes. Firstly, the input layer of the network is modified to achieve dual-mode data fusion of RGB and depth images. Secondly, by constructing the corresponding region generation network to indicate the integral constraint between the fruit and the stem, false recognition of branches is reduced. Thirdly, a multi-class prediction subnetwork is used to decouple the pixel-level category predictions of fruit and stem. Meanwhile, multi-task loss balance and adaptive feature pooling are adopted to overcome the limitation caused by the size difference between fruit and stem. The experimental results show that the improved Mask R-CNN achieved an accuracy of 93.76% for fruit recognition, which is 11.53% and 15.5% higher than that of the standard Mask R-CNN and YOLACT, and it achieves an accuracy of 89.34% for stem recognition, which is 13.91% and 19.7% higher than that of the standard Mask R-CNN and YOLACT, respectively. Besides, the recall rate of the proposed method for stem recognition is 94.47%, which is 11.53% and 8.3% higher than that of YOLACT and Mask R-CNN, respectively. In addition, the proposed method takes only 0.04 s to process a single image, providing an efficient approach for automatically picking cherry tomatoes in plant factories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凡华完成签到,获得积分10
刚刚
1秒前
情怀应助jyq采纳,获得10
1秒前
kai发布了新的文献求助10
1秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
闪闪怀柔完成签到,获得积分10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
终梦应助科研通管家采纳,获得10
2秒前
2秒前
终梦应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
黄油曲奇完成签到,获得积分10
3秒前
田様应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
3秒前
Akim应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
lluuoo完成签到,获得积分10
3秒前
4秒前
英俊的铭应助翟翟采纳,获得10
4秒前
4秒前
wxyshare应助云是采纳,获得10
5秒前
6秒前
6秒前
llay完成签到 ,获得积分10
7秒前
7秒前
酷波er应助1255475177采纳,获得10
7秒前
泛泛之交发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481218
求助须知:如何正确求助?哪些是违规求助? 4582199
关于积分的说明 14384156
捐赠科研通 4510881
什么是DOI,文献DOI怎么找? 2472055
邀请新用户注册赠送积分活动 1458443
关于科研通互助平台的介绍 1432034