Denoising Aggregation of Graph Neural Networks by Using Principal Component Analysis

计算机科学 人工智能 主成分分析 降噪 图形 人工神经网络 降维 噪音(视频) 模式识别(心理学) 辍学(神经网络) 机器学习 理论计算机科学 图像(数学)
作者
Dong Wei,Marcin Woźniak,Junsheng Wu,Li Weigang,Zongwen Bai
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 2385-2394 被引量:49
标识
DOI:10.1109/tii.2022.3156658
摘要

To avoid the overfitting phenomenon that appeared in performing graph neural networks (GNNs) on test examples, the feature encoding scheme of GNNs usually introduces the dropout procedure. However, after learning latent node representations under this scheme, Gaussian noise produced by the dropout operation is inevitably transmitted into the next neighborhood aggregation step, which necessarily hampers the unbiased aggregation ability of GNN models. To address this issue, in this article, we present a novel aggregator, denoising aggregation (DNAG), which utilizes principal component analysis (PCA) to preserve the aggregated real signals from neighboring features and simultaneously filter out the Gaussian noise. The idea is different from using PCA on traditional applications to reduce the feature dimension. We regard PCA as an aggregator to compress the neighboring node features to have better expressive denoising power. We propose new training architectures to simplify the intensive computation of PCA in DNAG. Numerical experiments show the apparent superiority of the proposed DNAG models in gaining more denoising capability and achieving the state of the art for a set of predictive tasks on several graph-structured datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可乐完成签到 ,获得积分10
刚刚
香翔想相完成签到,获得积分10
刚刚
1秒前
1秒前
莫愁一舞完成签到,获得积分10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
2秒前
所所应助科研通管家采纳,获得10
2秒前
b_wasky发布了新的文献求助10
2秒前
戴继超发布了新的文献求助10
2秒前
3秒前
Umar完成签到,获得积分10
3秒前
mew桑完成签到,获得积分10
3秒前
xxp发布了新的文献求助10
3秒前
ccjjpp1243发布了新的文献求助10
4秒前
4秒前
4秒前
现实的又夏完成签到,获得积分10
4秒前
Daisy完成签到,获得积分10
4秒前
aaa完成签到,获得积分10
4秒前
4秒前
津津乐道完成签到,获得积分10
5秒前
雷涵晶发布了新的文献求助10
5秒前
科研通AI2S应助又又采纳,获得10
5秒前
大个应助fang采纳,获得10
5秒前
领导范儿应助秦玉蓉采纳,获得10
5秒前
sunshine完成签到,获得积分10
5秒前
ECCE发布了新的文献求助10
6秒前
爱尚Coco完成签到,获得积分10
6秒前
6秒前
专注流沙发布了新的文献求助10
6秒前
7秒前
7秒前
默默的立辉完成签到,获得积分10
7秒前
weiwenzuo发布了新的文献求助20
8秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785203
求助须知:如何正确求助?哪些是违规求助? 3330716
关于积分的说明 10247928
捐赠科研通 3046146
什么是DOI,文献DOI怎么找? 1671860
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759798