Mutual consistency learning for semi-supervised medical image segmentation

分割 计算机科学 人工智能 一致性(知识库) 编码器 模式识别(心理学) 半监督学习 源代码 监督学习 深度学习 机器学习 人工神经网络 操作系统
作者
Yicheng Wu,Zongyuan Ge,Donghao Zhang,Minfeng Xu,Lei Zhang,Yong Xia,Jianfei Cai
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:81: 102530-102530 被引量:165
标识
DOI:10.1016/j.media.2022.102530
摘要

In this paper, we propose a novel mutual consistency network (MC-Net+) to effectively exploit the unlabeled data for semi-supervised medical image segmentation. The MC-Net+ model is motivated by the observation that deep models trained with limited annotations are prone to output highly uncertain and easily mis-classified predictions in the ambiguous regions (e.g., adhesive edges or thin branches) for medical image segmentation. Leveraging these challenging samples can make the semi-supervised segmentation model training more effective. Therefore, our proposed MC-Net+ model consists of two new designs. First, the model contains one shared encoder and multiple slightly different decoders (i.e., using different up-sampling strategies). The statistical discrepancy of multiple decoders’ outputs is computed to denote the model’s uncertainty, which indicates the unlabeled hard regions. Second, we apply a novel mutual consistency constraint between one decoder’s probability output and other decoders’ soft pseudo labels. In this way, we minimize the discrepancy of multiple outputs (i.e., the model uncertainty) during training and force the model to generate invariant results in such challenging regions, aiming at regularizing the model training. We compared the segmentation results of our MC-Net+ model with five state-of-the-art semi-supervised approaches on three public medical datasets. Extension experiments with two standard semi-supervised settings demonstrate the superior performance of our model over other methods, which sets a new state of the art for semi-supervised medical image segmentation. Our code is released publicly at https://github.com/ycwu1997/MC-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Huying发布了新的文献求助10
1秒前
1秒前
小马甲应助Davin_ji采纳,获得10
2秒前
2秒前
2秒前
九公子完成签到,获得积分10
2秒前
2秒前
搜集达人应助冷雨采纳,获得10
3秒前
hh发布了新的文献求助10
3秒前
murphy完成签到,获得积分10
3秒前
popo发布了新的文献求助10
4秒前
超锅完成签到,获得积分20
5秒前
细腻的沂发布了新的文献求助10
5秒前
5秒前
5秒前
希望天下0贩的0应助N_N采纳,获得10
6秒前
6秒前
神勇的兜发布了新的文献求助10
6秒前
6秒前
852应助石文采纳,获得10
7秒前
11223344发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
自然卷完成签到,获得积分10
8秒前
8秒前
飞在夏夜的猫完成签到,获得积分10
8秒前
ranqiang发布了新的文献求助10
9秒前
9秒前
憨憨完成签到,获得积分10
9秒前
文献狂人发布了新的文献求助10
9秒前
10秒前
天天快乐应助章半仙采纳,获得10
10秒前
如梦中发布了新的文献求助10
10秒前
hanzhipad应助aniu采纳,获得10
11秒前
11秒前
yaaaaajie完成签到,获得积分10
11秒前
李健应助阿童木采纳,获得10
11秒前
popo完成签到,获得积分10
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813742
求助须知:如何正确求助?哪些是违规求助? 3358095
关于积分的说明 10391771
捐赠科研通 3075433
什么是DOI,文献DOI怎么找? 1689298
邀请新用户注册赠送积分活动 812632
科研通“疑难数据库(出版商)”最低求助积分说明 767288