亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Complete Genome Sequencing of Halophilic Endophytic Aspergillus montevidensis, Strain ZYD4, Isolated from Alfalfa Stems Grown in Saline-Alkaline Soils

嗜盐菌 拉伤 生物 全基因组测序 植物 基因组 图书馆学 基因 遗传学 解剖 计算机科学 细菌
作者
Kaihui Liu,Xiaowei Ding,Guoliang Wang,Wanting Liu
出处
期刊:Molecular Plant-microbe Interactions [Scientific Societies]
卷期号:35 (9): 867-869 被引量:3
标识
DOI:10.1094/mpmi-12-21-0314-a
摘要

HomeMolecular Plant-Microbe Interactions®Vol. 35, No. 9Complete Genome Sequencing of Halophilic Endophytic Aspergillus montevidensis, Strain ZYD4, Isolated from Alfalfa Stems Grown in Saline-Alkaline Soils PreviousNext RESOURCE ANNOUNCEMENT OPENOpen Access licenseComplete Genome Sequencing of Halophilic Endophytic Aspergillus montevidensis, Strain ZYD4, Isolated from Alfalfa Stems Grown in Saline-Alkaline SoilsKaihui Liu, Xiaowei Ding, Guoliang Wang, and Wanting LiuKaihui Liu†Corresponding authors: K. Liu; E-mail Address: kaihhui168@sust.edu.cn, and X. Ding; E-mail Address: dxw518@sust.edu.cnSchool of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, ChinaSearch for more papers by this author, Xiaowei Ding†Corresponding authors: K. Liu; E-mail Address: kaihhui168@sust.edu.cn, and X. Ding; E-mail Address: dxw518@sust.edu.cnhttp://orcid.org/0000-0001-6060-2773School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, ChinaSearch for more papers by this author, Guoliang WangSchool of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, ChinaSearch for more papers by this author, and Wanting LiuSchool of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, ChinaSearch for more papers by this authorAffiliationsAuthors and Affiliations Kaihui Liu † Xiaowei Ding † Guoliang Wang Wanting Liu School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China Published Online:13 Jul 2022https://doi.org/10.1094/MPMI-12-21-0314-AAboutSectionsPDF ToolsAdd to favoritesDownload CitationsTrack Citations ShareShare onFacebookTwitterLinked InRedditEmailWechat Genome AnnouncementAspergillus is a complex group of ascomycetes comprising several hundred mold species, which are ubiquitously distributed in both natural and engineered ecosystems. This diverse group of filamentous fungi generally encompasses bioremediators, plant-growth-promoting fungi, biocontrol agents, and fungal endophytes. Many Aspergillus spp. have scientific and practical economic applications in food fermentation, environmental remediation, plant growth promotion, and biocontrol (Bano et al. 2018; Morales-Sánchez et al. 2021; Park et al. 2017; Salas-Marina et al. 2011). Among Aspergillus spp., the anamorph Aspergillus amstelodami (L. Mangin) was first catalogued in 1926 (Thom and Church 1926), and the teleomorph of this species was named A. montevidensis by Talice and Mackinnon in 1931. Previous studies showed that this microorganism can produce antibiotics and benzaldehyde derivatives with potent antimicrobial and antibiofilm properties (Darling et al. 1963; Fathallah et al. 2019). Our study found that A. montevidensis was capable of growing in hypersaline conditions supplemented with salt at 4.5 mol/liter (Ding et al. 2019). These findings suggest that A. montevidensis has potential applications in the fields of biological control and saline agriculture.Strain ZYD4 was isolated from alfalfa stems grown in saline and alkaline soils (Liu et al. 2017). The endophytic strain ZYD4 was cultivated using yeast extract-peptone-dextrose (Difco) and mycelia were collected for the genomic DNA extraction using the QIAamp DNA mini kit (Qiagen). The quality and concentration of the DNA samples were quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific). Based on the morphological traits and phylogenetic analysis of the internal transcribed spacer, ZYD4 was identified as A. montevidensis (Fig. 1). For PacBio sequencing, a DNA library was constructed with an insert size of 20 kb using the SMRT Bell Template kit 1.0 (PacBio). For Illumina MiSeq sequencing, libraries were prepared with an insert size of 350 bp using an NEBNext Ultra DNA Library Prep Kit (NEB). The whole genome of strain ZYD4 was sequenced via the PacBio Sequel Systems and Illumina platform (Illumina, Inc.). The reads were trimmed and filtered using Trimmomatic v0.38 (Bolger et al. 2014) and de novo assembly was performed using the SPAdes genome assembler v3.12 (Bankevich et al. 2012). In total, 288,113 clean reads (average length: 11,548 bp) were obtained with an N50 read length of 13,464 bp, and the genome coverage was 125×. The final assembled genome contains 26,622,312 bases derived from nine contigs, with an N50 contig length of 3,879,884 and a G + C content of 49.1% (Table 1). The genome size is within the range of published Aspergillus genomes such as A. ruber, A. cristatus, A. chevalieri, and A. sydowii, which range from 26.2 to 35.4 Mb. The assembled genome contains 4,486 repeat sequences (0.81% of the genome) identified by Repeat Masker v4.0.5 and Tandem Repeats Finder v4.07b (Benson 1999; Saha et al. 2008). Protein-coding genes were predicted using the Augustus 2.7 program (Hoff and Stanke 2013). Genome-wide gene functional annotation was performed using the nonredundant protein database (NR), the Kyoto Encyclopedia of Genes and Genomes (KEGG), Pfam domains (Pfam), SwissProt, eukaryotic orthologous groups (KOG), and carbohydrate-active enzymes (CAZymes) databases, generating 6,061 predicted genes. We identified a total of 5,812 functional genes with NR annotation, 5,641 genes involved in different KEGG pathways, 4,142 genes with Pfam, 2,727 genes with SwissProt classification, and 1,903 genes with KOG items. In addition, 274 genes encoding CAZymes were assigned through the dbCAN2 web server (Zhang et al. 2018). We also predicted 189 transfer RNA genes, 43 ribosome RNA genes, and 19 other noncoding RNA genes. Genome analysis via the antiSMASH v5.1.2 revealed 21 putative gene clusters for secondary metabolite biosynthesis (Blin et al. 2019). Thirteen of these clusters encode nonribosomal peptide synthetases that catalyze the biosynthesis of various bioactive peptides. Four gene clusters encode type I polyketide synthases, which are responsible for the production of polyketides. The remaining clusters encode enzymes involved in the biosynthesis of terpene and siderophore.Fig. 1. Morphological and phylogenetic analysis of the strain ZYD4. A and B, Conidial head and cleistothecia of the fungus grown on potato dextrose agar media were stained with lactophenol cotton blue solution, visualized with a microscope (Olympus). C, Neighbor-joining phylogenetic tree of the fungus based on internal transcribed spacer sequences. Bootstrap values (expressed as percentages of 1,000 replications) are given at the nodes.Download as PowerPointTable 1. Summary statistics of the Aspergillus montevidensis strain ZYD4 genomeVariablesaStatisticsGenome sizes (bp)26,622,312Genome coverage125×Number of scaffolds9Maximum scaffold length (bp)6,508,595Average assembly length (bp)11,548N5013,464GC (%)49.1Number of predicted genes6,061Genes annotated by NR5,812Genes annotated by KEGG5,641Genes annotated by Pfam4,142Genes annotated by SwissProt2,727Genes annotated by KOG1,903Genes annotated by CAZyme274aDatabases: NR = nonredundant protein, KEGG = Kyoto Encyclopedia of Genes and Genomes, KOG = eukaryotic orthologous groups, and CAZyme = carbohydrate-active enzymes.Table 1. Summary statistics of the Aspergillus montevidensis strain ZYD4 genomeView as image HTML Data AvailabilityThe annotated whole-genome sequence of A. montevidensis, strain ZYD4, has been deposited at DNA Data Bank of Japan/European Nucleotide Archive/GenBank under the accession number JAJFZZ000000000. PacBio and Illumina sequencing read data were deposited in the Sequence Read Archive under the BioSample accession number SAMN22627947.AcknowledgmentsWe thank L. Long for the manuscript editing.The author(s) declare no conflict of interest.Literature CitedBankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., and Pevzner, P. A. 2012. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19:455-477. https://doi.org/10.1089/cmb.2012.0021 Crossref, Medline, ISI, Google ScholarBano, A., Hussain, J., Akbar, A., Mehmood, K., Anwar, M., Hasni, M. S., Ullah, S., Sajid, S., and Ali, I. 2018. Biosorption of heavy metals by obligate halophilic fungi. Chemosphere 199:218-222. https://doi.org/10.1016/j.chemosphere.2018.02.043 Crossref, Medline, ISI, Google ScholarBenson, G. 1999. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 27:573-580. https://doi.org/10.1093/nar/27.2.573 Crossref, Medline, ISI, Google ScholarBlin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S. Y., Medema, M. H., and Weber, T. 2019. antiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47:W81-W87. https://doi.org/10.1093/nar/gkz310 Crossref, Medline, ISI, Google ScholarBolger, A. M., Lohse, M., and Usadel, B. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120. https://doi.org/10.1093/bioinformatics/btu170 Crossref, Medline, ISI, Google ScholarDarling, W. M., Campbell, P. J., and Mcardel, M. 1963. Antibiotics from Aspergillus amstelodami. J. Gen. Microbiol. 33:191-204. https://doi.org/10.1099/00221287-33-2-191 Crossref, Medline, Google ScholarDing, X., Liu, K., Lu, Y., and Gong, G. 2019. Morphological, transcriptional, and metabolic analyses of osmotic-adapted mechanisms of the halophilic Aspergillus montevidensis ZYD4 under hypersaline conditions. Appl. Microbiol. Biotechnol. 103:3829-3846. https://doi.org/10.1007/s00253-019-09705-2 Crossref, Medline, ISI, Google ScholarFathallah, N., Raafat, M. M., Issa, M. Y., Abdel-Aziz, M. M., Bishr, M., Abdelkawy, M. A., and Salama, O. 2019. Bio-guided fractionation of prenylated benzaldehyde derivatives as potent antimicrobial and antibiofilm from Ammi majus L. fruits-associated Aspergillus amstelodami. Molecules 24:4118. https://doi.org/10.3390/molecules24224118 Crossref, ISI, Google ScholarHoff, K. J., and Stanke, M. 2013. WebAUGUSTUS—A web service for training AUGUSTUS and predicting genes in eukaryotes. Nucleic Acids Res. 41:W123-W128. https://doi.org/10.1093/nar/gkt418 Crossref, Medline, ISI, Google ScholarLiu, K. H., Ding, X. W., Narsing Rao, M. P., Zhang, B., Zhang, Y. G., Liu, F. H., Liu, B. B., Xiao, M., and Li, W. J. 2017. Morphological and transcriptomic analysis reveals the osmoadaptive response of endophytic fungus Aspergillus montevidensis ZYD4 to high salt stress. Front. Microbiol. 8:1789. https://doi.org/10.3389/fmicb.2017.01789 Crossref, Medline, ISI, Google ScholarMorales-Sánchez, V., Díaz, C. E., Trujillo, E., Olmeda, S. A., Valcarcel, F., Muñoz, R., Andrés, M. F., and González-Coloma, A. 2021. Bioactive metabolites from the endophytic fungus Aspergillus sp. SPH2. J. Fungi (Basel) 7:109. https://doi.org/10.3390/jof7020109 Crossref, Medline, Google ScholarPark, H. S., Jun, S. C., Han, K. H., Hong, S. B., and Yu, J. H. 2017. Diversity, application, and synthetic biology of industrially important Aspergillus fungi. Adv. Appl. Microbiol. 100:161-202. https://doi.org/10.1016/bs.aambs.2017.03.001 Crossref, Medline, ISI, Google ScholarSaha, S., Bridges, S., Magbanua, Z. V., and Peterson, D. G. 2008. Empirical comparison of ab initio repeat finding programs. Nucleic Acids Res. 36:2284-2294. https://doi.org/10.1093/nar/gkn064 Crossref, Medline, ISI, Google ScholarSalas-Marina, M. A., Silva-Flores, M. A., Cervantes-Badillo, M. G., Rosales-Saavedra, M. T., Islas-Osuna, M. A., and Casas-Flores, S. 2011. The plant growth-promoting fungus Aspergillus ustus promotes growth and induces resistance against different lifestyle pathogens in Arabidopsis thaliana. J. Microbiol. Biotechnol. 21:686-696. https://doi.org/10.4014/jmb.1101.01012 Crossref, Medline, ISI, Google ScholarThom, C., and Church, M. B. 1926. The Aspergilli. Williams and Wilkins, Baltimore, MD, U.S.A. Google ScholarZhang, H., Yohe, T., Huang, L., Entwistle, S., Wu, P., Yang, Z., Busk, P. K., Xu, Y., and Yin, Y. 2018. dbCAN2: A meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46:W95-W101. https://doi.org/10.1093/nar/gky418 Crossref, Medline, ISI, Google ScholarFunding: This study was supported by the National Natural Science Foundation of China (grant number 31970120). This work was partially funded by the Program of Agricultural Scientific and Technological Innovation of Shaanxi Province (2021NY-206) and by the program of Shaanxi University of Science and Technology (2018BJ-58 and 2019BJ-47).The author(s) declare no conflict of interest. Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.DetailsFiguresLiterature CitedRelated Vol. 35, No. 9 September 2022ISSN:0894-0282e-ISSN:1943-7706 Download Metrics Article History Issue Date: 22 Sep 2022Published: 13 Jul 2022Accepted: 19 Apr 2022 Pages: 867-869 InformationCopyright © 2022 The Author(s).This is an open access article distributed under the CC BY-NC-ND 4.0 International license.Funding National Natural Science Foundation of ChinaGrant/Award Number: 31970120 Program of Agricultural Scientific and Technological Innovation of Shaanxi ProvinceGrant/Award Number: 2021NY-206 Shaanxi University of Science and TechnologyGrant/Award Number: 2018BJ-58Grant/Award Number: 2019BJ-47 KeywordsascomycetesAspergillusbiocontrolbioremediatorshypersalinesaline-alkaline soilThe author(s) declare no conflict of interest.PDF download
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呵呵贺哈完成签到 ,获得积分10
1秒前
weibo完成签到,获得积分10
3秒前
20秒前
yb完成签到,获得积分10
22秒前
hhhhhhh发布了新的文献求助10
23秒前
hhhhhhh完成签到,获得积分20
30秒前
Jx完成签到 ,获得积分10
31秒前
1分钟前
Yuki完成签到 ,获得积分10
1分钟前
Kevin发布了新的文献求助10
1分钟前
手撕英语关注了科研通微信公众号
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
Kevin发布了新的文献求助10
1分钟前
2分钟前
手撕英语发布了新的文献求助30
2分钟前
Orange应助璇3采纳,获得50
2分钟前
2分钟前
Perry完成签到,获得积分0
2分钟前
2分钟前
jlw发布了新的文献求助10
2分钟前
3分钟前
兮豫完成签到 ,获得积分10
3分钟前
3分钟前
qiuer7应助jlw采纳,获得10
3分钟前
CC完成签到,获得积分20
3分钟前
3分钟前
3分钟前
CC关注了科研通微信公众号
3分钟前
sono发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
璇3发布了新的文献求助50
3分钟前
3分钟前
默默善愁发布了新的文献求助50
4分钟前
隐形曼青应助noothinh采纳,获得10
4分钟前
璇3完成签到 ,获得积分10
4分钟前
喜悦的小土豆完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413257
求助须知:如何正确求助?哪些是违规求助? 4530416
关于积分的说明 14122912
捐赠科研通 4445392
什么是DOI,文献DOI怎么找? 2439191
邀请新用户注册赠送积分活动 1431244
关于科研通互助平台的介绍 1408710