Deep Learning Based Compressive Sensing for UWB Signal Reconstruction

压缩传感 信号重构 计算机科学 稳健性(进化) 信号(编程语言) 重建算法 迭代重建 无线传感器网络 人工智能 算法 采样(信号处理) 信号处理 遥感 计算机视觉 电信 雷达 基因 滤波器(信号处理) 生物化学 地质学 化学 程序设计语言 计算机网络
作者
Zihan Luo,Jing Liang,Jie Ren
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-10
标识
DOI:10.1109/tgrs.2022.3181891
摘要

Compressive sensing(CS) can greatly reduce the number of sampling points of signals, and therefore it is widely adopted in ultra-wideband(UWB) sensor systems. However, how to reconstruct the sensing signal from the compressed signal accurately is still an open problem because original signals do not always satisfy the sparse hypothesis that is required in CS. Typically, an appropriate CS reconstruction algorithm should be designed for a particular scenario, such as signal encoding, optical imaging and soil dynamic monitoring, etc. Unfortunately, soil data is susceptible to climatic factors, which leads to unsatisfactory performance of traditional reconstruction algorithms. To improve the accuracy of CS reconstruction for volatile signals as UWB soil echoes, we propose a novel deep learning based CS algorithm, named SFDLCS (select-first-decide-later compressive sensing) for UWB sensor signal reconstruction. In this algorithm, a search network is designed to perform the non-linear mapping from compressed residuals to non-zero elements in sensor signal, and a decision network is designed to characterize the distribution of UWB signals. These two networks form a ”select first, decide later” structure, which greatly improves the accuracy of signal reconstruction by utilizing the correlation of non-zero elements of the sensor signal. The effectiveness of this SFDLCS is demonstrated based on measured UWB soil data acquired by a P440 UWB sensor. Compared with traditional reconstruction algorithms, the proposed algorithm achieves both lower reconstruction error and stronger robustness in the noisy environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_nqaogn发布了新的文献求助10
刚刚
刚刚
科研通AI6应助有机会吗采纳,获得10
刚刚
妖精完成签到 ,获得积分10
刚刚
刚刚
刚刚
陈晓敏完成签到,获得积分10
1秒前
科研顺利1发布了新的文献求助10
2秒前
浅渊发布了新的文献求助10
2秒前
Aryatarg完成签到,获得积分10
2秒前
yyy发布了新的文献求助30
2秒前
2秒前
lulu发布了新的文献求助10
3秒前
queer发布了新的文献求助10
3秒前
3秒前
何hehe完成签到 ,获得积分10
3秒前
似水流年完成签到,获得积分20
3秒前
不期而遇完成签到 ,获得积分10
4秒前
小青椒应助斑布迪迪采纳,获得30
4秒前
4秒前
木棉完成签到,获得积分10
4秒前
小蘑菇应助果实采纳,获得10
4秒前
杉杉完成签到,获得积分10
5秒前
名扬天下完成签到,获得积分10
5秒前
Owen应助冯贺琪采纳,获得10
5秒前
史淼荷发布了新的文献求助40
6秒前
海风吹发布了新的文献求助10
6秒前
6秒前
HAND完成签到,获得积分10
6秒前
李爱国应助研友_nqaogn采纳,获得30
6秒前
allanqiao发布了新的文献求助10
6秒前
搜集达人应助淡淡的鱼采纳,获得10
6秒前
桐桐应助深情惜梦采纳,获得10
6秒前
7秒前
科研通AI6应助杰馨采纳,获得10
7秒前
怡然立轩完成签到 ,获得积分10
7秒前
诺诺发布了新的文献求助10
8秒前
ZZQ完成签到,获得积分10
8秒前
专注的剑心完成签到 ,获得积分10
8秒前
DE发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Target genes for RNAi in pest control: A comprehensive overview 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5084292
求助须知:如何正确求助?哪些是违规求助? 4301065
关于积分的说明 13401795
捐赠科研通 4125371
什么是DOI,文献DOI怎么找? 2259413
邀请新用户注册赠送积分活动 1263608
关于科研通互助平台的介绍 1197708