亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals

计算机科学 人工智能 卷积神经网络 脑-机接口 模式识别(心理学) 深度学习 学习迁移 运动表象 脑电图 支持向量机 联营 机器学习 心理学 精神科
作者
Zahra Khademi,Farideh Ebrahimi,Hussain Montazery Kordy
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:143: 105288-105288 被引量:112
标识
DOI:10.1016/j.compbiomed.2022.105288
摘要

In the Motor Imagery (MI)-based Brain Computer Interface (BCI), users' intention is converted into a control signal through processing a specific pattern in brain signals reflecting motor characteristics. There are such restrictions as the limited size of the existing datasets and low signal to noise ratio in the classification of MI Electroencephalogram (EEG) signals. Machine learning (ML) methods, particularly Deep Learning (DL), have overcome these limitations relatively. In this study, three hybrid models were proposed to classify the EEG signal in the MI-based BCI. The proposed hybrid models consist of the convolutional neural networks (CNN) and the Long-Short Term Memory (LSTM). In the first model, the CNN with different number of convolutional-pooling blocks (from shallow to deep CNN) was examined; a two-block CNN model not affected by the vanishing gradient descent and yet able to extract desirable features employed; the second and third models contained pre-trained CNNs conducing to the exploration of more complex features. The transfer learning strategy and data augmentation methods were applied to overcome the limited size of the datasets by transferring learning from one model to another. This was achieved by employing two powerful pre-trained convolutional neural networks namely ResNet-50 and Inception-v3. The continuous wavelet transform (CWT) was used to generate images for the CNN. The performance of the proposed models was evaluated on the BCI Competition IV dataset 2a. The mean accuracy vlaues of 86%, 90%, and 92%, and mean Kappa values of 81%, 86%, and 88% were obtained for the hybrid neural network with the customized CNN, the hybrid neural network with ResNet-50 and the hybrid neural network with Inception-v3, respectively. Despite the promising performance of the three proposed models, the hybrid neural network with Inception-v3 outperformed the two other models. The best obtained result in the present study improved the previous best result in the literature by 7% in terms of classification accuracy. From the findings, it can be concluded that transfer learning based on a pre-trained CNN in combination with LSTM is a novel method in MI-based BCI. The study also has implications for the discrimination of motor imagery tasks in each EEG recording channel and in different brain regions which can reduce computational time in future works by only selecting the most effective channels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助寄草采纳,获得10
1秒前
FLY完成签到,获得积分10
2秒前
拼搏流沙发布了新的文献求助10
5秒前
柚木完成签到,获得积分10
6秒前
夏冰应助李剑鸿采纳,获得10
9秒前
Akim应助柚木采纳,获得10
11秒前
石刘气泡shui完成签到 ,获得积分10
11秒前
cy0824完成签到 ,获得积分10
13秒前
大碗完成签到 ,获得积分10
15秒前
章鱼完成签到,获得积分10
15秒前
科研通AI2S应助开心泥猴桃采纳,获得10
22秒前
无私萧完成签到,获得积分20
22秒前
Leffzeng完成签到,获得积分10
24秒前
李剑鸿完成签到,获得积分10
28秒前
科研通AI5应助Leffzeng采纳,获得10
28秒前
EasonYao发布了新的文献求助10
32秒前
zho应助李剑鸿采纳,获得10
35秒前
未雨绸缪发布了新的文献求助10
37秒前
赘婿应助www采纳,获得10
37秒前
寒冷麦片发布了新的文献求助10
39秒前
39秒前
周绿真完成签到,获得积分10
42秒前
周绿真发布了新的文献求助10
45秒前
shuang完成签到 ,获得积分10
47秒前
寒冷麦片完成签到,获得积分20
50秒前
54秒前
不去明知山完成签到 ,获得积分10
56秒前
汉堡包应助鲁丁丁采纳,获得10
58秒前
王晓静完成签到 ,获得积分10
58秒前
Leffzeng发布了新的文献求助10
59秒前
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得30
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
鲁丁丁发布了新的文献求助10
1分钟前
konosuba完成签到,获得积分0
1分钟前
1分钟前
寄草发布了新的文献求助10
1分钟前
科研通AI5应助Little Mianmian采纳,获得20
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792399
求助须知:如何正确求助?哪些是违规求助? 3336688
关于积分的说明 10281848
捐赠科研通 3053424
什么是DOI,文献DOI怎么找? 1675608
邀请新用户注册赠送积分活动 803581
科研通“疑难数据库(出版商)”最低求助积分说明 761468