Logistics-involved service composition in a dynamic cloud manufacturing environment: A DDPG-based approach

云制造 服务组合 适应性 云计算 服务质量 稳健性(进化) 分布式计算 蚁群优化算法 计算机科学 数学优化 人工智能 数学 计算机网络 化学 操作系统 生物 基因 生物化学 生态学
作者
Yongkui Liu,Huagang Liang,Yingying Xiao,Haifeng Zhang,Jingxin Zhang,Linlin Zhang,Lihui Wang
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier BV]
卷期号:76: 102323-102323 被引量:14
标识
DOI:10.1016/j.rcim.2022.102323
摘要

Service composition as an important technique for combining multiple services to construct a value-added service is a major research issue in cloud manufacturing. Highly dynamic environments present great challenges to cloud manufacturing service composition (CMfg-SC). Most of previous studies employ heuristic algorithms to solve service composition issues in cloud manufacturing, which, however, are designed for specific problems and lack adaptability necessary to dynamic environment. Hence, CMfg-SC calls for new adaptive approaches. Recent advances in deep reinforcement learning (DRL) provide a new means for solving this issue. Based on DRL, we propose a Deep Deterministic Policy Gradient (DDPG)-based service composition approach to cloud manufacturing, with which optimal service composition solutions can be learned through repeated training. Performance of DDPG in solving CMfg-SC in both static and dynamic environments is examined. Results obtained with another DRL algorithm - Deep Q-Networks (DQN) and the traditional Ant Colony Optimization (ACO) are also presented. Comparison indicates that DDPG has better adaptability, robustness, and extensibility to dynamic environments than ACO, although ACO converges faster and its steady QoS value of the service composition solution is higher than that of DDPG by 0.997%. DDPG outperforms DQN in convergence speed and stability, and the QoS value of the service composition solution of DDPG is higher than that of DQN by 3.249%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
abu发布了新的文献求助10
1秒前
Lidocaine发布了新的文献求助10
1秒前
LLL发布了新的文献求助10
1秒前
1秒前
暖若安阳完成签到,获得积分10
1秒前
一一应助高兴的彩虹采纳,获得10
2秒前
jam完成签到,获得积分10
3秒前
木易羊发布了新的文献求助10
3秒前
工业关于发布了新的文献求助10
4秒前
4秒前
4秒前
不米二发布了新的文献求助10
5秒前
机智的乌发布了新的文献求助10
6秒前
Dr大壮发布了新的文献求助10
6秒前
乐乐应助缓慢听安采纳,获得10
6秒前
6秒前
领导范儿应助立八青采纳,获得10
7秒前
violet完成签到,获得积分10
7秒前
8秒前
Summer发布了新的文献求助10
8秒前
bc应助可爱的王女士采纳,获得30
8秒前
8秒前
Cassio发布了新的文献求助10
9秒前
机灵柚子应助Try采纳,获得10
9秒前
violet发布了新的文献求助10
10秒前
叶辰发布了新的文献求助10
11秒前
杰桑的西地那非完成签到 ,获得积分10
13秒前
XPR发布了新的文献求助10
14秒前
14秒前
15秒前
草莓发布了新的文献求助10
15秒前
tuanheqi应助科研闲人采纳,获得150
16秒前
18秒前
晚意完成签到,获得积分10
19秒前
20秒前
1111完成签到,获得积分10
20秒前
li完成签到,获得积分10
21秒前
小郝已读博完成签到 ,获得积分10
22秒前
23秒前
24秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814868
求助须知:如何正确求助?哪些是违规求助? 3358972
关于积分的说明 10398999
捐赠科研通 3076429
什么是DOI,文献DOI怎么找? 1689822
邀请新用户注册赠送积分活动 813323
科研通“疑难数据库(出版商)”最低求助积分说明 767599