IRUNet for medical image segmentation

计算机科学 分割 人工智能 深度学习 编码器 卷积神经网络 模式识别(心理学) 图像分割 精确性和召回率 计算机视觉 操作系统
作者
Fatemeh Hoorali,Hossein Khosravi,Bagher Moradi
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:191: 116399-116399 被引量:24
标识
DOI:10.1016/j.eswa.2021.116399
摘要

In recent years, deep learning has been widely used to segment medical images and assist physicians in better diagnosis and treatment of diseases. Anthrax is a serious infectious disease that has a worldwide distribution. One of the most important ways to diagnose this disease is the microscopic examination of slides containing tissue samples of patients. The state-of-the-art models for segmentation of the slide images are based on deep neural networks and have encoder-decoder architecture, such as fully convolutional network, UNet, and their variants. Skip connections play a key role in such models. However, in many of these models, the skip connections only aggregate features related to the same scales of the encoder and decoder sections, which degrades the quality of the segmentation. We propose an improved UNet-based architecture to segment microscopic images of patient tissue samples. The proposed model, called IRUNet, takes the advantage of inception and residual blocks in the skip connections and combines multi-scale features in order to extract better features for segmentation. Also, to extract powerful representations in the encoder section, several convolutional networks have been used as the backbone and their effect on the segmentation results has been investigated. The experimental results show that despite many challenges in the field of microscopic image analysis such as high image resolution, different contrasts, image artifacts, object crowding, and overlapping, IRUNet has better performance on medical image segmentation compared to the state-of-the-art models. It achieves the precision of 92.8%, the recall rate of 93%, and the Dice score of 92.9% which are outstanding results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ycxlb发布了新的文献求助10
刚刚
ang应助cici采纳,获得10
1秒前
2418478262发布了新的文献求助10
1秒前
Dragonfln完成签到,获得积分10
1秒前
2秒前
2秒前
orixero应助Linzy采纳,获得10
2秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
赘婿应助屿婉采纳,获得10
6秒前
星辰大海应助Dye采纳,获得10
8秒前
RolfHoward完成签到,获得积分10
9秒前
NANA发布了新的文献求助10
11秒前
小木得霖发布了新的文献求助10
11秒前
金多贤完成签到,获得积分10
11秒前
12秒前
12秒前
朝花夕拾完成签到,获得积分10
13秒前
14秒前
yetta发布了新的文献求助30
16秒前
16秒前
金多贤发布了新的文献求助10
17秒前
鳗鱼凡波发布了新的文献求助10
17秒前
17秒前
18秒前
12完成签到,获得积分10
23秒前
顾矜应助懒洋洋tzy采纳,获得10
24秒前
26秒前
科研通AI5应助朴素海亦采纳,获得10
26秒前
HtheJ完成签到,获得积分10
26秒前
小木得霖完成签到,获得积分10
28秒前
29秒前
32秒前
32秒前
fish完成签到,获得积分10
34秒前
34秒前
量子星尘发布了新的文献求助10
34秒前
youngcy发布了新的文献求助10
35秒前
852应助shenerqing采纳,获得10
35秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Logical form: From GB to Minimalism 5000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1800
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 880
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4202381
求助须知:如何正确求助?哪些是违规求助? 3737105
关于积分的说明 11767396
捐赠科研通 3409472
什么是DOI,文献DOI怎么找? 1870655
邀请新用户注册赠送积分活动 926214
科研通“疑难数据库(出版商)”最低求助积分说明 836470