材料科学
聚二甲基硅氧烷
摩擦电效应
纳米发生器
聚偏氟乙烯
制作
多孔性
复合材料
弹性体
纳米技术
聚合物
基质(水族馆)
压电
病理
地质学
海洋学
替代医学
医学
作者
Phakkhananan Pakawanit,Utchawadee Pharino,Thitirat Charoonsuk,Saichon Sriphan,Satana Pongampai,Naratip Vittayakorn
标识
DOI:10.1080/10584587.2021.1961511
摘要
Owing to their structural advantages over bulk polymers, porous 3D substrates possess immense potential in triboelectric energy generation. This work reports the effective effort to fabricate the porous structure of polydimethylsiloxane, also known as the sponge-PDMS, by a simple template method. The sodium chloride salt from commodity product is used to create the 300 μm size of pores within the PDMS elastomeric layers, turning affects to the mechanical deformability of the triboelectric nanogenerator (TENG). The inner face of those pores is composited with the PVDF-HFP particles as a piezoelectric fillers. The presence of those fillers can be confirmed and their distribution within porous PDMS is 3D visualized by the synchrotron radiation X-ray tomography. The spatial distribution of the PVDF-HFP made it possible to fabricate the piezo-embedded macroporous TENG with high output power of 7.84 μW, giving over 2-fold enhancement, compared with the sponge-PDMS and even more when compared with the flat PDMS film under the same mechanical force.
科研通智能强力驱动
Strongly Powered by AbleSci AI