Nanoscopic Thermodynamics

纳米尺度 热力学 材料科学 统计物理学 物理 纳米技术
作者
Weihong Qi
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:49 (9): 1587-1595 被引量:139
标识
DOI:10.1021/acs.accounts.6b00205
摘要

ConspectusConventional thermodynamics for bulk substances encounters challenges when one considers materials on the nanometer scale. Quantities such as entropy, enthalpy, free energy, melting temperature, ordering temperature, Debye temperature, and specific heat no longer remain constant but change with the crystal dimension, size, and morphology. Often, one phenomenon is associated with a variety of theories from different perspectives. Still, a model that can reconcile the size and shape dependence of the thermal properties of the nanoscaled substances remains one of the goals of nanoscience and nanotechnology.This Account highlights the nanoscopic thermodynamics for nanoparticles, nanowires, and nanofilms, with particular emphasis on the bond energy model. The central idea is that the atomic cohesive energy determines the thermodynamic performance of a substance and the cohesive energy varies with the atomic coordination environment. It is the cohesive energy difference between the core and the shell that dictates the nanoscopic thermodynamics. This bond energy model rationalizes the following: (i) how the surface dangling bonds depress the melting temperature, entropy, and enthalpy; (ii) how the order–disorder transition of the nanoparticles depends on particle size and how their stability may vary when they are embedded in an appropriate matrix; (iii) predictions of the existence of face-centered cubic structures of Ti, Zr, and Hf at small size; (iv) how two elements that are immiscible in the bulk can form an alloy on the nanoscale, where the critical size can be predicted.The model has enabled us to reproduce the size and shape dependence of a number of physical properties, such as melting temperature, melting entropy, melting enthalpy, ordering temperature, Gibbs free energy, and formation heat, among others, for materials such as Pd, Au, Ag, Cu, Ni, Sn, Pb, In, Bi, Al, Ti, Zr, Hf, In–Al, Ag–Ni, Co–Pt, Cu–Ag, Cu–Ni, Au–Ni, Ag–Pt, and Au–Pt on the nanometer scale. Furthermore, this model predicts the phenomena of the thermal stability of metal particles on graphene, the superheating of embedded nanoparticles, the order–disorder transition of nanoalloys, the size–temperature phase diagram for low-dimensional solids and the alloying ability on the nanoscale. Extensions of this model may lead to the design of new functional nanomaterials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
ash发布了新的文献求助10
4秒前
fish1116完成签到,获得积分10
4秒前
cuddly完成签到 ,获得积分10
5秒前
5秒前
6秒前
核桃发布了新的文献求助10
6秒前
思思完成签到,获得积分10
7秒前
G1997完成签到 ,获得积分10
10秒前
ash完成签到,获得积分10
11秒前
13秒前
13秒前
十一苗完成签到 ,获得积分10
14秒前
ni完成签到 ,获得积分10
14秒前
李爱国应助咸鱼王的挣扎采纳,获得10
15秒前
飞一般的亮哥完成签到 ,获得积分10
16秒前
17秒前
大模型应助氢氦锂皮皮采纳,获得10
17秒前
17秒前
安好发布了新的文献求助10
18秒前
18秒前
18秒前
搞怪元正发布了新的文献求助10
18秒前
我是老大应助Echo采纳,获得10
19秒前
愉快谷芹完成签到 ,获得积分10
19秒前
cassandra1231发布了新的文献求助10
19秒前
哈哈完成签到,获得积分10
21秒前
羊羽完成签到,获得积分10
21秒前
dangziutiu完成签到 ,获得积分10
22秒前
希望天下0贩的0应助wangjue采纳,获得10
22秒前
Sober完成签到 ,获得积分10
22秒前
23秒前
25秒前
苹果巧蕊完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
26秒前
30秒前
miracle1005发布了新的文献求助10
31秒前
CodeCraft应助月明采纳,获得10
32秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Building Quantum Computers 1078
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3862670
求助须知:如何正确求助?哪些是违规求助? 3405167
关于积分的说明 10643644
捐赠科研通 3128668
什么是DOI,文献DOI怎么找? 1725356
邀请新用户注册赠送积分活动 831025
科研通“疑难数据库(出版商)”最低求助积分说明 779516