已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Compare the performance of multiple binary classification models in microbial high-throughput sequencing datasets

支持向量机 人工智能 随机森林 计算机科学 二进制数 机器学习 二元分类 人工神经网络 估计员 预测建模 数据挖掘 模式识别(心理学) 数学 统计 算术
作者
Nuohan Xu,Zhenyan Zhang,Yechao Shen,Qi Zhang,Zhen Liu,Yitian Yu,Yan Wang,Chaotang Lei,Mingjing Ke,Danyan Qiu,Tao Lu,Yi‐Ling Chen,Juntao Xiong,Haifeng Qian
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:837: 155807-155807 被引量:4
标识
DOI:10.1016/j.scitotenv.2022.155807
摘要

The development of machine learning and deep learning provided solutions for predicting microbiota response on environmental change based on microbial high-throughput sequencing. However, there were few studies specifically clarifying the performance and practical of two types of binary classification models to find a better algorithm for the microbiota data analysis. Here, for the first time, we evaluated the performance, accuracy and running time of the binary classification models built by three machine learning methods - random forest (RF), support vector machine (SVM), logistic regression (LR), and one deep learning method - back propagation neural network (BPNN). The built models were based on the microbiota datasets that removed low-quality variables and solved the class imbalance problem. Additionally, we optimized the models by tuning. Our study demonstrated that dataset pre-processing was a necessary process for model construction. Among these 4 binary classification models, BPNN and RF were the most suitable methods for constructing microbiota binary classification models. Using these 4 models to predict multiple microbial datasets, BPNN showed the highest accuracy and the most robust performance, while the RF method was ranked second. We also constructed the optimal models by adjusting the epochs of BPNN and the n_estimators of RF for six times. The evaluation related to performances of models provided a road map for the application of artificial intelligence to assess microbial ecology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYX完成签到 ,获得积分10
1秒前
Mercury完成签到,获得积分10
1秒前
3秒前
布丁仔完成签到,获得积分10
5秒前
科研学术完成签到,获得积分10
7秒前
踏实努力完成签到 ,获得积分10
7秒前
周浩宇发布了新的文献求助10
8秒前
扶摇完成签到 ,获得积分10
9秒前
现代的无春完成签到 ,获得积分10
13秒前
15秒前
17秒前
姚波发布了新的文献求助10
20秒前
认真子默发布了新的文献求助10
22秒前
鹏鹏哥完成签到,获得积分10
23秒前
哇咔咔完成签到 ,获得积分10
24秒前
星辰大海应助科研通管家采纳,获得10
24秒前
乐乐应助科研通管家采纳,获得10
24秒前
wanci应助科研通管家采纳,获得10
25秒前
28秒前
认真子默完成签到,获得积分10
30秒前
30秒前
SophiaMX完成签到,获得积分10
31秒前
糖醋里脊加醋完成签到 ,获得积分10
32秒前
Carrots发布了新的文献求助10
34秒前
YYY发布了新的文献求助10
35秒前
38秒前
SYLH应助俏皮松鼠采纳,获得10
39秒前
John完成签到 ,获得积分10
41秒前
舒心青旋完成签到 ,获得积分10
44秒前
44秒前
guyankuan发布了新的文献求助10
48秒前
大模型应助可靠的纲采纳,获得10
53秒前
开心的野狼完成签到 ,获得积分10
55秒前
57秒前
Sandy发布了新的文献求助10
58秒前
秋作完成签到,获得积分10
58秒前
zgq987完成签到,获得积分20
59秒前
pigpara完成签到 ,获得积分10
1分钟前
lvsehx发布了新的文献求助10
1分钟前
bkagyin应助张emo采纳,获得10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784713
求助须知:如何正确求助?哪些是违规求助? 3329909
关于积分的说明 10243697
捐赠科研通 3045255
什么是DOI,文献DOI怎么找? 1671603
邀请新用户注册赠送积分活动 800484
科研通“疑难数据库(出版商)”最低求助积分说明 759416