亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

In Silico Prediction of Compounds Binding to Human Plasma Proteins by QSAR Models

数量结构-活动关系 生物信息学 适用范围 分子描述符 厕所 试验装置 预测建模 交叉验证 训练集 药物发现 机器学习 集合(抽象数据类型) 人血浆 计算机科学 化学 人工智能 计算生物学 生物系统 色谱法 生物 生物化学 基因 程序设计语言
作者
Lixia Sun,Hong-Chang Yang,Jie Li,Tianduanyi Wang,Weihua Li,Guixia Liu,Yun Tang
出处
期刊:ChemMedChem [Wiley]
卷期号:13 (6): 572-581 被引量:55
标识
DOI:10.1002/cmdc.201700582
摘要

Plasma protein binding (PPB) is a significant pharmacokinetic property of compounds in drug discovery and design. Due to the high cost and time-consuming nature of experimental assays, in silico approaches have been developed to assess the binding profiles of chemicals. However, because of unambiguity and the lack of uniform experimental data, most available predictive models are far from satisfactory. In this study, an elaborately curated training set containing 967 diverse pharmaceuticals with plasma-protein-bound fractions (fb ) was used to construct quantitative structure-activity relationship (QSAR) models by six machine learning algorithms with 26 molecular descriptors. Furthermore, we combined all of the individual learners to yield consensus prediction, marginally improving the accuracy of the consensus model. The model performance was estimated by tenfold cross validation and three external validation sets comprising 242 pharmaceutical, 397 industrial, and 231 newly designed chemicals, respectively. The models showed excellent performance for the entire test set, with mean absolute error (MAE) ranging from 0.126 to 0.178, demonstrating that our models could be used by a chemist when drawing a molecular structure from scratch. Meanwhile, structural descriptors contributing significantly to the predictive power of the models were related to the binding mechanisms, and the trend in terms of their effects on PPB can serve as guidance for the structural modification of chemicals. The applicability domain was also defined to distinguish favorable predictions from unfavorable predictions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
8秒前
xiuwen发布了新的文献求助10
12秒前
14秒前
浮游应助科研通管家采纳,获得10
44秒前
浮游应助科研通管家采纳,获得10
44秒前
浮游应助科研通管家采纳,获得10
44秒前
浮游应助科研通管家采纳,获得10
44秒前
华仔应助科研通管家采纳,获得30
44秒前
浮游应助科研通管家采纳,获得10
44秒前
浮游应助科研通管家采纳,获得10
44秒前
浮游应助科研通管家采纳,获得10
44秒前
58秒前
1分钟前
2分钟前
白华苍松发布了新的文献求助10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
CodeCraft应助科研通管家采纳,获得30
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
2分钟前
posh完成签到 ,获得积分10
3分钟前
h0jian09完成签到,获得积分10
3分钟前
3分钟前
Yyyyyyyyy发布了新的文献求助10
3分钟前
心动应助池雨采纳,获得10
4分钟前
英喆完成签到 ,获得积分0
4分钟前
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
星辰大海应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
充电宝应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498393
求助须知:如何正确求助?哪些是违规求助? 4595621
关于积分的说明 14449560
捐赠科研通 4528451
什么是DOI,文献DOI怎么找? 2481516
邀请新用户注册赠送积分活动 1465648
关于科研通互助平台的介绍 1438364