Shared-nearest-neighbor-based clustering by fast search and find of density peaks

聚类分析 维数之咒 最近邻搜索 k-最近邻算法 计算机科学 最近邻链算法 数据挖掘 相似性(几何) 航程(航空) 点(几何) 模式识别(心理学) 星团(航天器) 最近邻图 算法 数学 人工智能 相关聚类 树冠聚类算法 图像(数学) 复合材料 材料科学 程序设计语言 几何学
作者
Rui Liu,Hong Wang,Xiaomei Yu
出处
期刊:Information Sciences [Elsevier BV]
卷期号:450: 200-226 被引量:340
标识
DOI:10.1016/j.ins.2018.03.031
摘要

Clustering by fast search and find of density peaks (DPC) is a new clustering method that was reported in Science in June 2014. This clustering algorithm is based on the assumption that cluster centers have high local densities and are generally far from each other. With a decision graph, cluster centers can be easily located. However, this approach suffers from certain disadvantages. First, the definition of the local density and distance measurement is too simple; therefore, the DPC algorithm might perform poorly on complex datasets that are of multiple scales, cross-winding, of various densities, or of high dimensionality. Second, the one-step allocation strategy is not robust and has poor fault tolerance. Thus, if a point is assigned incorrectly, then the subsequent allocation will further amplify the error, resulting in more errors, which will have a severe negative impact on the clustering results. Third, the cutoff distance dc is generally difficult to determine since the range of each attribute is unknown in most cases. Even when being normalized or using the relative percentage method, a small change in dc will still cause a conspicuous fluctuation in the result, and this is especially true for real-world datasets. Considering these drawbacks, we propose a shared-nearest-neighbor-based clustering by fast search and find of density peaks (SNN-DPC) algorithm. We present three new definitions: SNN similarity, local density ρ and distance from the nearest larger density point δ. These definitions take the information of the nearest neighbors and the shared neighbors into account, and they can self-adapt to the local surroundings. Then, we introduce our two-step allocation method: inevitably subordinate and possibly subordinate. The former quickly and accurately recognizes and allocates the points that certainly belong to one cluster by counting the number of shared neighbors between two points. The latter assigns the remaining points by finding the clusters to which more neighbors belong. The algorithm is benchmarked on publicly available synthetic datasets, UCI real-world datasets and the Olivetti Faces dataset, which are often used to test the performance of clustering algorithms. We compared the results with those of DPC, fuzzy weighted K-nearest neighbors density peak clustering (FKNN-DPC), affinity propagation (AP), ordering points to identify the clustering structure (OPTICS), density-based spatial clustering of applications with noise (DBSCAN), and K-means. The metrics used are adjusted mutual information (AMI), adjusted Rand index (ARI), and Fowlkes–Mallows index (FMI). The experimental results prove that our method can recognize clusters regardless of their size, shape, and dimensions; is robust to noise; and is remarkably superior to DPC, FKNN-DPC, AP, OPTICS, DBSCAN, and K-means.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助稀饭采纳,获得10
刚刚
dennisysz发布了新的文献求助10
刚刚
cdercder应助amengptsd采纳,获得10
1秒前
zhiyu发布了新的文献求助10
2秒前
星辰大海应助瘦瘦冰枫采纳,获得10
6秒前
apollo3232完成签到 ,获得积分10
6秒前
YY完成签到,获得积分10
8秒前
华仔应助两味愚采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
12秒前
15秒前
18秒前
科研通AI5应助LHL采纳,获得10
19秒前
小周关注了科研通微信公众号
20秒前
20秒前
jgqysu发布了新的文献求助10
22秒前
陆陶缘完成签到 ,获得积分10
22秒前
22秒前
22秒前
科研通AI5应助思敏采纳,获得10
23秒前
现代的冰珍完成签到,获得积分10
25秒前
ttttt完成签到,获得积分20
25秒前
27秒前
白桃发布了新的文献求助10
28秒前
wys完成签到,获得积分10
31秒前
LHL发布了新的文献求助10
33秒前
敏感的板栗完成签到,获得积分10
38秒前
39秒前
不成文完成签到,获得积分10
40秒前
Ava应助fafa采纳,获得10
41秒前
42秒前
Owen应助98采纳,获得10
43秒前
淘淘完成签到,获得积分10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777469
求助须知:如何正确求助?哪些是违规求助? 3322775
关于积分的说明 10211743
捐赠科研通 3038195
什么是DOI,文献DOI怎么找? 1667163
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133