生物
选择性拼接
细胞生长
癌细胞
蛋白激酶A
分子生物学
细胞生物学
癌症研究
激酶
基因亚型
基因
癌症
生物化学
遗传学
标识
DOI:10.4077/cjp.2018.bag528
摘要
Sterile alpha motif (SAM)- and leucine-zipper-containing kinase (ZAK) plays a role in the regulation of cell cycle progression and oncogenic transformation. The ZAK gene generates two transcript variants, ZAKα and ZAKβ, through alternative splicing. In this study, we identified that ZAKα proteins were upregulated in tumor tissues, whereas ZAKβ proteins were mostly expressed in corresponding normal tissues. The ectopically expressed ZAKβ proteins in cancer cells inhibited cancer cell proliferation as well as anchorage-independent growth. The ZAKβ:ZAKα protein ratio played a role in the regulation of the cyclic adenosine monophosphate (cAMP) signaling pathway, whereas high ZAKβ protein levels led to the activation of cAMP response element binding protein 1 (CREB1) and exerted antitumor properties. Overexpression of ZAKβ or CREB1 cDNAs in cancer cells inhibited anchorage-independent growth and also reduced the levels of cyclooxygenase 2 (Cox2) and β-catenin proteins. Cancer cells treated with doxorubicin (Doxo) resulted in the switching from the expression of ZAKα to ZAKβ and also inhibited cancer cell growth in soft agar, demonstrating that pharmacological drugs could be used to manipulate endogenous reprogramming splicing events and resulting in the activation of endogenous antitumorigenic properties. We showed that the two ZAK transcript variants, ZAKα and ZAKβ, had opposite biological functions in the regulation of tumor cell proliferation in that ZAKβ had powerful antitumor properties and that ZAKα could promote tumor growth.
科研通智能强力驱动
Strongly Powered by AbleSci AI