吸附
木质素
铅(地质)
化学工程
化学
材料科学
有机化学
地质学
地貌学
工程类
作者
Chao Liu,Youming Li,Yi Hou
出处
期刊:Molecules
[Multidisciplinary Digital Publishing Institute]
日期:2019-07-25
卷期号:24 (15): 2704-2704
被引量:35
标识
DOI:10.3390/molecules24152704
摘要
Carboxymethyl lignin nanospheres (CLNPs) were synthesized by a two-step method using microwave irradiation and antisolvent. The morphology and structure of CLNPs were characterized by 31P-NMR, FTIR, and SEM, and the results showed that they had an average diameter of 73.9 nm, a surface area of 8.63 m2 or 3.2 times larger than the original lignin, and abundant carboxyl functional groups of 1.8 mmol/g. The influence of dosage, pH, contact time, and concentration on the adsorption of metal ions onto CLNPs were analyzed, and the maximum adsorption capacity of CLNPs for Pb(II) was found to be 333.26 mg/g, which is significantly higher than other lignin-based adsorbents and conventional adsorbents. Adsorption kinetics and isotherms indicated that the adsorption of lead ions in water onto CLNPs followed the pseudo-second-order model based on monolayer chemisorption mechanism. The main chemical interaction between CLNPs and lead ions was chelation. CLNPs also showed an excellent recycling performance, with only 27.0% adsorption capacity loss after 10 consecutive adsorption-desorption cycles.
科研通智能强力驱动
Strongly Powered by AbleSci AI