对映体药物
对映选择合成
帕利烯
组合化学
合成子
化学
纳米技术
材料科学
手性(物理)
有机化学
催化作用
聚合物
手征对称破缺
物理
夸克
量子力学
Nambu–Jona Lasinio模型
作者
Zahid Hassan,Eduard Spuling,Daniel M. Knoll,Joerg Lahann,Stefan Bräse
摘要
Planar chiral [2.2]paracyclophane-based ligands and employment of such enantiopure representative ligands to facilitate selective transformation of prochiral or racemic substances into enantiopure products are rarely explored compared to the complex chiral scaffolds such as ferrocenes. This tutorial discusses recent findings and inspiring progress in design, synthetic tunability and applications of planar chiral [2.2]paracyclophane systems as a practical class of catalysts for asymmetric synthesis. Here, we summarize a series of planar chiral [2.2]paracyclophanes that are becoming an important new tool-box in asymmetric synthesis, employed in a variety of synthetic venues such as new chiral ligands and catalysts for stereo-controlled and enantioselective addition of alkyl, alkenyl, alkynyl and aryl zinc reagents to aliphatic and aromatic aldehydes, ketones, imines and many more. Besides, planar chiral [2.2]paracyclophanes are useful synthons, from a material perspective, can be incorporated into conjugated polymeric systems for chiroptical and optoelectronic properties, find broad applications in bio- and materials science, for instance, gold-based cytostatics, surface-mounted chiral MOF thin films for selective adsorption or in functionalized parylene polymer coatings, to name a few. This is an up-to-date tutorial review, written exclusively on planar chiral [2.2]paracyclophane chemistry, covering key aspects of synthesis, structures, properties, applications and future directions of chiral polymeric assemblies and novel biomaterials built with [2.2]paracyclophanes.
科研通智能强力驱动
Strongly Powered by AbleSci AI