计算机科学
人工智能
神经编码
规范(哲学)
判别式
投射试验
K-SVD公司
模式识别(心理学)
稀疏逼近
代表(政治)
词典学习
理论计算机科学
稳健性(进化)
数学
纯数学
基因
政治
化学
生物化学
法学
政治学
作者
Yulin Sun,Zhao Zhang,Weming Jiang,Guangcan Liu,Meng Wang,Shuicheng Yan
标识
DOI:10.1109/icpr.2018.8545863
摘要
In this paper, we mainly propose a Robust Adaptive Projective Dictionary Pair Learning (RA-DPL) framework based on the adaptive discriminative representations. Our formulation can seamlessly integrate the robust projective dictionary pair learning and the adaptive sparse representation learning into a unified model. RA-DPL improves the existing DPL algorithm in threefold. First, RA-DPL aims at computing the robust projective dictionary pairs by employing the sparse and robust l 2,1 -norm to encode the reconstruction error. Second, RA-DPL regularizes the robust l 2,1 -norm on the analysis dictionary so that the analysis dictionary can extract sparse coefficients from the given samples explicitly. More importantly, the optimization of l 2,1 -norm is so efficient, that is, the sparse coding step will be time-saving. Third, RA-DPL can clearly preserve the local neighborhood relationship of the sparse coefficients within each class, which can make the learnt representations discriminating and can also improve the discriminating power of learnt dictionary. Extensive simulations on image databases demonstrate that our RA-DPL can obtain the superior performance over other state-of-the-arts.
科研通智能强力驱动
Strongly Powered by AbleSci AI