化学
生物传感器
电化学发光
化学发光
检出限
小RNA
纳米技术
发光测量
三脚架(摄影)
色谱法
发光
光电子学
材料科学
生物化学
物理
光学
基因
作者
Liping Lü,Jiaxing Wang,Wujian Miao,Xiayan Wang,Guangsheng Guo
标识
DOI:10.1021/acs.analchem.8b04271
摘要
A novel probe for the highly sensitive detection of microRNA with enhanced helix accessibility and good assembling without backfilling was developed using a tripod structure fabricated by triplex DNA. A layer of triplex DNA assembled on electrodeposited reduced graphene oxide was used as the capture probe, and a subsequent hybridization chain reaction that promoted the efficient intercalation of the electrogenerated chemiluminescence (ECL) emitter [Ru(bpy)2(dppz)]2+ (bpy refers to 2,2′-bipyridine, and dppz refers to dipyrido[3,2-a:2′,3′-c]phenazine) was used as an analytical-signal amplifier. The fabricated biosensor was examined with an anodic ECL mode using tri-n-propyl amine as the coreactant. The construction of the biosensor was systematically characterized with various techniques including atomic-force microscopy, gel electrophoresis, cyclic voltammetry, and electrochemical-impedance spectroscopy, and its performance was optimized under a variety of experimental conditions, especially the concentration of each reagent as well as the incubation time. Under the optimal experimental conditions, the reported biosensor showed a very low limit of detection of 0.10 fM (S/N = 3) and a wide linear dynamic range covering 0.50 fM to 100 pM toward microRNA-155 with excellent specificity, stability, and reproducibility. Finally, the biosensor was successfully applied to the detection of microRNA-155 extracted from the colon-cancer cell line DLD1, demonstrating its potential application in the sensitive detection of biological samples in the early diagnosis of diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI