Modeling Clustered Data with Very Few Clusters

计算机科学 估计员 推论 样本量测定 数据挖掘 光学(聚焦) 样品(材料) I类和II类错误 贝叶斯推理 星团(航天器) 特征(语言学) 贝叶斯概率 机器学习 统计 计量经济学 人工智能 数学 物理 哲学 光学 化学 色谱法 程序设计语言 语言学
作者
Daniel McNeish,Laura M. Stapleton
出处
期刊:Multivariate Behavioral Research [Taylor & Francis]
卷期号:51 (4): 495-518 被引量:330
标识
DOI:10.1080/00273171.2016.1167008
摘要

Small-sample inference with clustered data has received increased attention recently in the methodological literature, with several simulation studies being presented on the small-sample behavior of many methods. However, nearly all previous studies focus on a single class of methods (e.g., only multilevel models, only corrections to sandwich estimators), and the differential performance of various methods that can be implemented to accommodate clustered data with very few clusters is largely unknown, potentially due to the rigid disciplinary preferences. Furthermore, a majority of these studies focus on scenarios with 15 or more clusters and feature unrealistically simple data-generation models with very few predictors. This article, motivated by an applied educational psychology cluster randomized trial, presents a simulation study that simultaneously addresses the extreme small sample and differential performance (estimation bias, Type I error rates, and relative power) of 12 methods to account for clustered data with a model that features a more realistic number of predictors. The motivating data are then modeled with each method, and results are compared. Results show that generalized estimating equations perform poorly; the choice of Bayesian prior distributions affects performance; and fixed effect models perform quite well. Limitations and implications for applications are also discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dr.lee发布了新的文献求助10
2秒前
6秒前
10秒前
爆米花应助疯大爷采纳,获得10
10秒前
11秒前
吕方发布了新的文献求助10
11秒前
CHB只争朝夕完成签到 ,获得积分10
12秒前
CipherSage应助沟通亿心采纳,获得10
13秒前
carbonhan完成签到,获得积分10
13秒前
浑灵安发布了新的文献求助30
13秒前
limin发布了新的文献求助10
16秒前
庚朝年完成签到 ,获得积分10
17秒前
18秒前
崔世强发布了新的文献求助10
18秒前
在水一方应助科研通管家采纳,获得10
18秒前
ED应助科研通管家采纳,获得10
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
打打应助科研通管家采纳,获得10
19秒前
炙热柚子应助科研通管家采纳,获得10
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
科目三应助科研通管家采纳,获得50
19秒前
炙热柚子应助科研通管家采纳,获得10
19秒前
19秒前
充电宝应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
小怪兽完成签到,获得积分10
21秒前
李哥发布了新的文献求助20
23秒前
刺猬完成签到,获得积分10
23秒前
北北完成签到 ,获得积分10
24秒前
谨慎秋珊完成签到 ,获得积分10
25秒前
29秒前
Youngman发布了新的文献求助10
35秒前
科目三应助斯文梦寒采纳,获得10
36秒前
ShengQ完成签到,获得积分10
36秒前
39秒前
一团小煤球完成签到,获得积分10
41秒前
务实思卉完成签到,获得积分20
42秒前
疯大爷完成签到,获得积分10
42秒前
42秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
The Framed World: Tourism, Tourists and Photography (New Directions in Tourism Analysis) 1st Edition 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825602
求助须知:如何正确求助?哪些是违规求助? 3367781
关于积分的说明 10447735
捐赠科研通 3087186
什么是DOI,文献DOI怎么找? 1698485
邀请新用户注册赠送积分活动 816805
科研通“疑难数据库(出版商)”最低求助积分说明 769973