Application of FTIR-PAS and Raman spectroscopies for the determination of organic matter in farmland soils

化学 土壤水分 傅里叶变换红外光谱 拉曼光谱 环境化学 有机质 分析化学(期刊) 有机化学 化学工程 土壤科学 环境科学 光学 物理 工程类
作者
Zhe Xing,Changwen Du,Kang Tian,Fei Ma,Yazhen Shen,Jianmin Zhou
出处
期刊:Talanta [Elsevier BV]
卷期号:158: 262-269 被引量:63
标识
DOI:10.1016/j.talanta.2016.05.076
摘要

In soil analysis, Raman spectroscopy is not as widely used as infrared spectroscopy mainly owing to fluorescence interferences. This paper investigated the feasibility of Fourier-transform infrared photoacoustic (FTIR-PAS) and Raman spectroscopies for predicting soil organic matter (SOM) using partial least squares regression (PLSR) analysis. 194 farmland soil samples were collected and scanned with FTIR and Raman spectrometers in the spectral range of 4000–400 cm−1 and 180–3200 cm−1, respectively. For the PLSR models, the combined dataset was split into 146 samples as the calibration set (75%) and 48 samples as the validation set (25%). The optimal number of analytical factors was determined using a leave-one-out cross-validation. The results showed that SOM could be predicted using FTIR-PAS and Raman spectroscopies independently, with R2>0.70 and RPD>1.8 for the validation sets. In comparison to the single applications of FTIR-PAS and Raman spectroscopies, accurate prediction of SOM was made by combining FTIR-PAS and Raman spectroscopies, with R2=0.81 and RPD=2.18 for the validation sets. By statistically assessing large amounts of PLS models, model-population analysis confirmed that the accuracy of the PLS model can be increased by combining FTIR-PAS and Raman spectroscopies. In conclusion, the combination of FTIR-PAS and Raman spectroscopies is a promising alternative for soil characterization, especially for the prediction of SOM, owing to the availability of complementary information from both FTIR-PAS (polar vibrations) and Raman spectroscopy (non-polar vibrations).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangling0124发布了新的文献求助10
刚刚
香蕉觅云应助图图采纳,获得10
刚刚
lili完成签到,获得积分10
刚刚
1秒前
1秒前
王青青完成签到,获得积分10
1秒前
娜娜发布了新的文献求助10
1秒前
科研通AI5应助Amireux采纳,获得10
1秒前
小盒汁发布了新的文献求助10
1秒前
2秒前
2秒前
研友_VZG7GZ应助baizhu采纳,获得10
2秒前
王晓雪发布了新的文献求助10
2秒前
3秒前
充电宝应助燕子采纳,获得10
3秒前
3秒前
3秒前
荷包蛋完成签到,获得积分10
3秒前
眯眯眼的小懒虫完成签到,获得积分10
3秒前
典雅的曼冬完成签到,获得积分10
4秒前
4秒前
维尼完成签到,获得积分10
5秒前
5秒前
5秒前
七庙完成签到,获得积分10
5秒前
cdercder应助科研通管家采纳,获得10
5秒前
从容芮应助科研通管家采纳,获得50
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
WTYUI应助科研通管家采纳,获得10
6秒前
从容芮应助科研通管家采纳,获得50
6秒前
cdercder应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
6秒前
可爱青曼完成签到,获得积分10
6秒前
bc应助66668888采纳,获得30
7秒前
共享精神应助顺心的巨人采纳,获得10
7秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Evaluation of sustainable development level for front-end cold-chain logistics of fruits and vegetables: a case study on Xinjiang, China 200
The Physical Oceanography of the Arctic Mediterranean Sea 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827932
求助须知:如何正确求助?哪些是违规求助? 3370230
关于积分的说明 10462045
捐赠科研通 3090092
什么是DOI,文献DOI怎么找? 1700260
邀请新用户注册赠送积分活动 817758
科研通“疑难数据库(出版商)”最低求助积分说明 770423