差异进化
渡线
计算机科学
数学优化
趋同(经济学)
理论(学习稳定性)
比例因子(宇宙学)
进化算法
比例(比率)
算法
差速器(机械装置)
收敛速度
数学
钥匙(锁)
人工智能
机器学习
工程类
物理
量子力学
航空航天工程
经济增长
计算机安全
经济
暗能量
宇宙学
空间的度量展开
出处
期刊:Chinese Control Conference
日期:2012-07-25
卷期号:: 2385-2390
被引量:5
摘要
Differential evolution (DE) algorithm is a promising global optimization approach, but its control parameters are sensitive to some difficult problems, and they must be adjusted artificially for different problems some times, which is really a time consuming work. In this paper, we present a new version of DE with self-adaptive control parameters. We call the new version efficient improved differential evolution (EIDE). The EIDE modifies scale factor by using a uniform distribution, and modifies crossover rate by using a linear increasing strategy. Both strategies can avoid guessing the appropriate values for scale factor and crossover rate, and save the regulating time of the two parameters. Based on two groups of experiments, the EIDE has shown better convergence and stability than the other three DE algorithms in most cases.
科研通智能强力驱动
Strongly Powered by AbleSci AI