High-Strength, Tough, and Self-Healing Nanocomposite Physical Hydrogels Based on the Synergistic Effects of Dynamic Hydrogen Bond and Dual Coordination Bonds

氢键 材料科学 自愈水凝胶 超分子化学 纳米复合材料 自愈 韧性 非共价相互作用 超分子聚合物 纳米技术 化学工程 复合材料 高分子化学 分子 有机化学 化学 工程类 病理 医学 替代医学
作者
Changyou Shao,Huanliang Chang,Meng Wang,Feng Xu,Jun Yang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:9 (34): 28305-28318 被引量:414
标识
DOI:10.1021/acsami.7b09614
摘要

Dynamic noncovalent interactions with reversible nature are critical for the integral synthesis of self-healing biological materials. In this work, we developed a simple one-pot strategy to prepare a fully physically cross-linked nanocomposite hydrogel through the formation of the hydrogen bonds and dual metal-carboxylate coordination bonds within supramolecular networks, in which iron ions (Fe3+) and TEMPO oxidized cellulose nanofibrils (CNFs) acted as cross-linkers and led to the improved mechanical strength, toughness, time-dependent self-recovery capability and self-healing property. The spectroscopic analysis and rheological measurements corroborated the existence of hydrogen bonds and dual coordination bonds. The mechanical tests and microscopic morphology were explored to elucidate the recovery properties and toughening mechanisms. The hydrogen bonds tend to preferentially break prior to the coordination bonds associated complexes that act as skeleton to maintain primary structure integrity, and the survived coordination bonds with dynamic feature also serve as sacrificial bonds to dissipate another amount of energy after the rupture of hydrogen bonds, which collectively maximize the contribution of sacrificial bonds to energy dissipation while affording elasticity. Additionally, the multiple noncovalent interactions in diverse types synergistically serve as dynamic but highly stable associations, leading to the effective self-healing efficiency over 90% after damage. We expect that this facile strategy of incorporating the biocompatible and biodegradable CNFs as building blocks may enrich the avenue in exploration of dynamic and tunable cellulosic hydrogels to expand their potential applications in the biomedical field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
w1245完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
龚黄鑫完成签到,获得积分20
3秒前
雨雨爱薯条完成签到 ,获得积分10
4秒前
4秒前
5秒前
qiqi发布了新的文献求助10
5秒前
我是老大应助西瓜采纳,获得10
6秒前
小管完成签到,获得积分10
6秒前
7秒前
Wenyilong发布了新的文献求助10
7秒前
8秒前
雪雪完成签到,获得积分10
10秒前
10秒前
luyao970131发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
TM发布了新的文献求助10
12秒前
13秒前
田某发布了新的文献求助10
13秒前
GodMG发布了新的文献求助10
14秒前
14秒前
赵欣月发布了新的文献求助10
14秒前
banbieshenlu完成签到,获得积分10
15秒前
懒羊羊发布了新的文献求助10
16秒前
蜂鸟发布了新的文献求助10
16秒前
浮游应助尊敬的寄松采纳,获得10
16秒前
123发布了新的文献求助10
16秒前
dongqing12311完成签到,获得积分10
16秒前
鸡鱼蚝发布了新的文献求助10
18秒前
所所应助Wenyilong采纳,获得10
18秒前
19秒前
19秒前
Starry完成签到,获得积分10
20秒前
深情安青应助兴奋的沛蓝采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5184492
求助须知:如何正确求助?哪些是违规求助? 4370234
关于积分的说明 13609525
捐赠科研通 4222407
什么是DOI,文献DOI怎么找? 2315807
邀请新用户注册赠送积分活动 1314377
关于科研通互助平台的介绍 1263324