A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines

自编码 计算机科学 人工神经网络 人工智能 断层(地质) 特征提取 深度学习 图层(电子) 机器学习 特征(语言学) 模式识别(心理学) 地质学 地震学 哲学 化学 有机化学 语言学
作者
Feng Jia,Yaguo Lei,Liang Guo,Jing Lin,Saibo Xing
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:272: 619-628 被引量:424
标识
DOI:10.1016/j.neucom.2017.07.032
摘要

In traditional intelligent fault diagnosis methods of machines, plenty of actual effort is taken for the manual design of fault features, which makes these methods less automatic. Among deep learning techniques, autoencoders may be a potential tool for automatic feature extraction of mechanical signals. However, traditional autoencoders have two following shortcomings. (1) They may learn similar features in mechanical feature extraction. (2) The learned features have shift variant properties, which leads to the misclassification of mechanical health conditions. To overcome the aforementioned shortcomings, a local connection network (LCN) constructed by normalized sparse autoencoder (NSAE), namely NSAE-LCN, is proposed for intelligent fault diagnosis. We construct LCN by input layer, local layer, feature layer and output layer. When raw vibration signals are fed to the input layer, LCN first uses NSAE to locally learn various meaningful features from input signals in the local layer, then obtains shift-invariant features in the feature layer and finally recognizes mechanical health conditions in the output layer. Thus, NSAE-LCN incorporates feature extraction and fault recognition into a general-purpose learning procedure. A gearbox dataset and a bearing dataset are used to validate the performance of the proposed NSAE-LCN. The results indicate that the learned features of NSAE are meaningful and dissimilar, and LCN helps to produce shift-invariant features and recognizes mechanical health conditions effectively. Through comparing with commonly used diagnosis methods, the superiority of the proposed NSAE-LCN is verified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HHH完成签到,获得积分10
刚刚
bathygobius完成签到,获得积分10
1秒前
OxO发布了新的文献求助10
1秒前
1秒前
鲤鱼芷波完成签到,获得积分10
4秒前
XD824发布了新的文献求助10
4秒前
5秒前
6秒前
迷路的朋友完成签到,获得积分10
7秒前
7秒前
科研通AI5应助alverine采纳,获得10
7秒前
CC完成签到,获得积分10
8秒前
8秒前
10秒前
10秒前
11秒前
土豆金发布了新的文献求助10
11秒前
sdl发布了新的文献求助10
13秒前
曼夭非夭完成签到,获得积分10
13秒前
mc发布了新的文献求助10
15秒前
16秒前
Atlantic完成签到,获得积分10
17秒前
18秒前
一点通完成签到,获得积分10
19秒前
Yue发布了新的文献求助10
21秒前
babyhead完成签到,获得积分10
22秒前
万能图书馆应助威士忌www采纳,获得10
23秒前
Orange应助徐徐采纳,获得10
24秒前
Groot完成签到,获得积分10
27秒前
28秒前
孤独衣完成签到,获得积分10
29秒前
SciGPT应助aiZYD采纳,获得10
30秒前
研猫完成签到 ,获得积分10
33秒前
zztand完成签到,获得积分10
34秒前
璐璐发布了新的文献求助10
35秒前
兴奋千兰完成签到,获得积分10
36秒前
yoonkk完成签到,获得积分10
36秒前
老张头秃了完成签到,获得积分10
37秒前
37秒前
38秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796537
求助须知:如何正确求助?哪些是违规求助? 3341751
关于积分的说明 10307672
捐赠科研通 3058381
什么是DOI,文献DOI怎么找? 1678151
邀请新用户注册赠送积分活动 805906
科研通“疑难数据库(出版商)”最低求助积分说明 762838