A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines

自编码 计算机科学 人工神经网络 人工智能 断层(地质) 特征提取 深度学习 图层(电子) 机器学习 特征(语言学) 模式识别(心理学) 地质学 地震学 哲学 化学 有机化学 语言学
作者
Feng Jia,Yaguo Lei,Liang Guo,Jing Lin,Saibo Xing
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:272: 619-628 被引量:424
标识
DOI:10.1016/j.neucom.2017.07.032
摘要

In traditional intelligent fault diagnosis methods of machines, plenty of actual effort is taken for the manual design of fault features, which makes these methods less automatic. Among deep learning techniques, autoencoders may be a potential tool for automatic feature extraction of mechanical signals. However, traditional autoencoders have two following shortcomings. (1) They may learn similar features in mechanical feature extraction. (2) The learned features have shift variant properties, which leads to the misclassification of mechanical health conditions. To overcome the aforementioned shortcomings, a local connection network (LCN) constructed by normalized sparse autoencoder (NSAE), namely NSAE-LCN, is proposed for intelligent fault diagnosis. We construct LCN by input layer, local layer, feature layer and output layer. When raw vibration signals are fed to the input layer, LCN first uses NSAE to locally learn various meaningful features from input signals in the local layer, then obtains shift-invariant features in the feature layer and finally recognizes mechanical health conditions in the output layer. Thus, NSAE-LCN incorporates feature extraction and fault recognition into a general-purpose learning procedure. A gearbox dataset and a bearing dataset are used to validate the performance of the proposed NSAE-LCN. The results indicate that the learned features of NSAE are meaningful and dissimilar, and LCN helps to produce shift-invariant features and recognizes mechanical health conditions effectively. Through comparing with commonly used diagnosis methods, the superiority of the proposed NSAE-LCN is verified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jau完成签到,获得积分0
1秒前
情怀应助小白采纳,获得10
4秒前
5秒前
Cm发布了新的文献求助10
6秒前
Akim应助tbc采纳,获得10
6秒前
木槿完成签到 ,获得积分10
7秒前
Enoch完成签到,获得积分10
10秒前
在水一方应助Cm采纳,获得10
11秒前
12秒前
SYLH应助活泼灵枫采纳,获得10
14秒前
小心科研完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
16秒前
18秒前
科研通AI5应助ok12采纳,获得10
20秒前
英姑应助Dream Luminator采纳,获得10
20秒前
21秒前
zhang完成签到,获得积分10
21秒前
辣椒酱完成签到,获得积分20
22秒前
Anserbe完成签到,获得积分10
22秒前
Cm发布了新的文献求助10
23秒前
23秒前
iwhsgfes完成签到,获得积分10
25秒前
27秒前
黄贰叁完成签到,获得积分10
28秒前
木樨完成签到,获得积分10
29秒前
NINI发布了新的文献求助10
29秒前
CHENG_2025应助小莲藕采纳,获得20
30秒前
31秒前
31秒前
Hello应助Cm采纳,获得10
31秒前
32秒前
32秒前
34秒前
老板来杯冷咖啡完成签到,获得积分10
38秒前
仿生人完成签到,获得积分10
38秒前
学习发布了新的文献求助10
38秒前
Ch完成签到 ,获得积分10
39秒前
39秒前
西原的橙果完成签到,获得积分10
40秒前
阿七完成签到,获得积分10
40秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3977846
求助须知:如何正确求助?哪些是违规求助? 3521988
关于积分的说明 11210995
捐赠科研通 3259220
什么是DOI,文献DOI怎么找? 1799562
邀请新用户注册赠送积分活动 878412
科研通“疑难数据库(出版商)”最低求助积分说明 806888