Identification of fine scale and landscape scale drivers of urban aboveground carbon stocks using high-resolution modeling and mapping

环境科学 土地覆盖 激光雷达 植被(病理学) 比例(比率) 自然地理学 碳纤维 空间生态学 天蓬 土地利用 碳核算 温室气体 地理 遥感 生态学 地图学 复合材料 考古 材料科学 病理 复合数 生物 医学
作者
Matthew G. E. Mitchell,Kasper Johansen,Martine Maron,Clive McAlpine,Dan Wu,Jonathan R. Rhodes
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:622-623: 57-70 被引量:43
标识
DOI:10.1016/j.scitotenv.2017.11.255
摘要

Urban areas are sources of land use change and CO2 emissions that contribute to global climate change. Despite this, assessments of urban vegetation carbon stocks often fail to identify important landscape-scale drivers of variation in urban carbon, especially the potential effects of landscape structure variables at different spatial scales. We combined field measurements with Light Detection And Ranging (LiDAR) data to build high-resolution models of woody plant aboveground carbon across the urban portion of Brisbane, Australia, and then identified landscape scale drivers of these carbon stocks. First, we used LiDAR data to quantify the extent and vertical structure of vegetation across the city at high resolution (5 × 5 m). Next, we paired this data with aboveground carbon measurements at 219 sites to create boosted regression tree models and map aboveground carbon across the city. We then used these maps to determine how spatial variation in land cover/land use and landscape structure affects these carbon stocks. Foliage densities above 5 m height, tree canopy height, and the presence of ground openings had the strongest relationships with aboveground carbon. Using these fine-scale relationships, we estimate that 2.2 ± 0.4 TgC are stored aboveground in the urban portion of Brisbane, with mean densities of 32.6 ± 5.8 MgC ha− 1 calculated across the entire urban land area, and 110.9 ± 19.7 Mg C ha− 1 calculated within treed areas. Predicted carbon densities within treed areas showed strong positive relationships with the proportion of surrounding tree cover and how clumped that tree cover was at both 1 km2 and 1 ha resolutions. Our models predict that even dense urban areas with low tree cover can have high carbon densities at fine scales. We conclude that actions and policies aimed at increasing urban carbon should focus on those areas where urban tree cover is most fragmented.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
亚亚完成签到 ,获得积分10
刚刚
Meira完成签到,获得积分10
刚刚
deng完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
Tacamily完成签到,获得积分10
1秒前
LEON完成签到,获得积分10
2秒前
尊敬西装发布了新的文献求助10
2秒前
yangjinru完成签到 ,获得积分10
3秒前
LLSSLL完成签到,获得积分10
4秒前
4秒前
4秒前
zzz发布了新的文献求助20
5秒前
吉吉国王完成签到,获得积分10
6秒前
woshiwuziq完成签到 ,获得积分0
6秒前
自己的样子好好看完成签到,获得积分10
7秒前
superspace完成签到,获得积分10
7秒前
Zhu完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
哔哔鱼发布了新的文献求助10
10秒前
RC_Wang应助科研通管家采纳,获得10
10秒前
RC_Wang应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
RC_Wang应助科研通管家采纳,获得10
10秒前
科研通AI6.1应助siri采纳,获得10
11秒前
zhogwe完成签到,获得积分10
11秒前
包包完成签到 ,获得积分10
12秒前
ruogu7完成签到,获得积分10
12秒前
害羞菲鹰完成签到,获得积分10
14秒前
14秒前
AI完成签到,获得积分10
15秒前
星辰完成签到,获得积分10
15秒前
忐忑的中心完成签到,获得积分10
16秒前
Tomasong完成签到,获得积分10
16秒前
DoLaso完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 500
Processing of reusable surgical textiles for use in health care facilities 500
Population genetics 2nd edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5809769
求助须知:如何正确求助?哪些是违规求助? 5887148
关于积分的说明 15526040
捐赠科研通 4934181
什么是DOI,文献DOI怎么找? 2657093
邀请新用户注册赠送积分活动 1603329
关于科研通互助平台的介绍 1558697