Machine Learning Algorithm for Shear Strength Prediction of Short Links for Steel Buildings

均方误差 轮缘 机器学习 平均绝对百分比误差 人工神经网络 Boosting(机器学习) 算法 人工智能 梯度升压 决定系数 预测建模 计算机科学 结构工程 工程类 数学 统计 随机森林
作者
Ghassan Almasabha,Odey Alshboul,Ali Shehadeh,Ali Saeed Almuflih
出处
期刊:Buildings [MDPI AG]
卷期号:12 (6): 775-775 被引量:41
标识
DOI:10.3390/buildings12060775
摘要

The rapid growth of using the short links in steel buildings due to their high shear strength and rotational capacity attracts the attention of structural engineers to investigate the performance of short links. However, insignificant attention has been oriented to efficiently developing a comprehensive model to forecast the shear strength of short links, which is expected to enhance the steel structures’ constructability. As machine learning algorithms was successfully used in various fields of structural engineering, the current study fills the gap in estimating the shear strength of short links using sophisticated machine learning algorithms. The deriving factors such as web and flange slenderness ratios, the flange-to-web area ratio, the forces in web and flange, and the link length ratio were investigated in this study, which is imperative to formulate an integrated prediction model. Consequently, the aim of this study utilizes advanced machine learning (ML) models (i.e., Extreme Gradient Boosting (XGBOOST), Light Gradient Boosting Machine (LightGBM), and Artificial Neural Network (ANN) to produce accurate forecasting for the shear strength. In this study, publicly available datasets were used for the training, testing, and validation. Different evaluation metrics were employed to evaluate the prediction’s performance of the used models, such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Coefficient of Determination (R2). The prediction result displays that the XGBOOST and LightGBM provided better, and more reliable results compared to ANN and the AISC code. The XGBOOST and LightGBM models yielded higher values of R2, lower (RMSE), (MAE), and (MAPE) values and have shown to perform more accurate. Therefore, the overall outcomes showed that the LightGBM outperformed the XGBOOST model. Moreover, the overstrength ratio predicted by the LightGBM showed an excellent performance compared to the Gene Expression and Finite Element-based models. The developed models are vital for practitioners to predict the shear strength accurately, which pave the road towards wider application for automation in the steel buildings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
佳齐发布了新的文献求助10
刚刚
1秒前
清爽饼干发布了新的文献求助10
2秒前
共享精神应助调皮以寒采纳,获得10
2秒前
pcg完成签到,获得积分10
3秒前
韩德胜完成签到 ,获得积分10
3秒前
樊星完成签到 ,获得积分10
4秒前
5秒前
5秒前
6秒前
6秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
在水一方应助铜锣烧采纳,获得10
8秒前
桐桐应助U123456采纳,获得30
10秒前
zhaopenghui发布了新的文献求助10
10秒前
11秒前
玩命的黑裤应助舒适访彤采纳,获得10
11秒前
清爽饼干完成签到,获得积分10
12秒前
12秒前
12秒前
善学以致用应助smile采纳,获得10
14秒前
HAO完成签到,获得积分10
14秒前
大模型应助蓝天采纳,获得10
14秒前
晴朗的蓝完成签到,获得积分10
14秒前
15秒前
15秒前
sdshi发布了新的文献求助10
16秒前
Smallriver发布了新的文献求助10
17秒前
17秒前
爆米花应助Lxy_zb采纳,获得10
17秒前
榴莲姑娘发布了新的文献求助30
18秒前
19秒前
可舒发布了新的文献求助10
19秒前
希望天下0贩的0应助Jun采纳,获得10
20秒前
22秒前
GUO发布了新的文献求助10
22秒前
serenity完成签到 ,获得积分10
22秒前
hahaya完成签到,获得积分20
22秒前
三三完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553450
求助须知:如何正确求助?哪些是违规求助? 4637983
关于积分的说明 14651924
捐赠科研通 4579900
什么是DOI,文献DOI怎么找? 2511951
邀请新用户注册赠送积分活动 1486817
关于科研通互助平台的介绍 1457747