Machine Learning for Design of Phosphorene Nanozyme Sensor and Its Intelligent Analysis of Clenbuterol in Animal-Derived Agro-Products

支持向量机 磷烯 人工神经网络 材料科学 机器学习 人工智能 计算机科学 生物系统 纳米技术 单层 生物
作者
Yao Xiong,Ruimei Wu,Lulu Xu,Ying Zhong,Yu Ge,Yangping Wen,Hang Yao,Weiqi Zhou,Shirong Ai
出处
期刊:Journal of The Electrochemical Society [Institute of Physics]
卷期号:170 (4): 047505-047505 被引量:8
标识
DOI:10.1149/1945-7111/acc9e1
摘要

Extraordinary electronic performance and unique structural characteristic of black phosphorene (BP) often is used as electrode modified materials in electrochemical sensors. In this paper, a machine learning (ML) strategy for phosphorene nanozyme sensor and its the intelligent of clenbuterol (CLB) in pork and pig serum samples is prepared. The silver nanoparticles decorate BP to prevent oxidative degradation of BP surface and further hybridize with multi-walled carbon nanotubes (MWCNTs) composites containing nafion (Nf) treated with isopropanol (IP) to improve environmental stability and electrocatalytic capacity of BP. Back-propagation artificial neural network (BP-ANN) model combined with genetic algorithm (GA) is employed to optimize sensor parameters such as BP concentrations, MWCNTs concentrations and ratio of V Nf :V IP , and compared with orthogonal experimental design (OED). Least square support vector machine, radial basis function and extreme learning machine are implemented to establish quantitative analysis model for CLB. The results showed that the CLB response current of BP sensor by BP-ANN-GA was improved 9.02% over OED method. Compared with the traditional linear regression, three models displayed better predictive performance, and LS-SVM was the best with the R 2 , RMSE and MAE and RPD of 0.9977, 0.0303, 0.0225, and 18.74, respectively. The average recoveries of CLB in pork and pig serum was 98.66% ∼ 101.67%, and its relative standard deviations was 0.19% ∼ 0.84%, indicating that electrochemical sensor using machine learning for intelligent analysis of CLB in animal-derived agro-products products was both feasible and practical.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ethen完成签到,获得积分10
刚刚
Ava应助听蝉采纳,获得10
1秒前
所所应助DR_ZHANG采纳,获得10
1秒前
眨眼完成签到,获得积分10
1秒前
战场原荡漾完成签到,获得积分10
1秒前
老婆婆不讲理完成签到,获得积分10
2秒前
ding应助PTERTIM247采纳,获得10
2秒前
2秒前
爱芹发布了新的文献求助10
2秒前
3秒前
屈狒狒完成签到,获得积分10
3秒前
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得30
3秒前
SciGPT应助科研通管家采纳,获得30
3秒前
浮游应助科研通管家采纳,获得10
3秒前
Zx_1993应助小超人采纳,获得10
3秒前
qqq应助科研通管家采纳,获得10
3秒前
3秒前
在水一方应助科研通管家采纳,获得10
4秒前
研究生end应助科研通管家采纳,获得20
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
彭于晏应助lele采纳,获得10
4秒前
王赟晖发布了新的文献求助10
4秒前
4秒前
无花果应助科研通管家采纳,获得10
4秒前
CodeCraft应助无语的乌鸦采纳,获得10
4秒前
4秒前
Hello应助科研通管家采纳,获得10
4秒前
zcl应助科研通管家采纳,获得150
4秒前
浮游应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
4秒前
攀攀发布了新的文献求助10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
核桃发布了新的文献求助10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258269
求助须知:如何正确求助?哪些是违规求助? 4420207
关于积分的说明 13759573
捐赠科研通 4293737
什么是DOI,文献DOI怎么找? 2356114
邀请新用户注册赠送积分活动 1352458
关于科研通互助平台的介绍 1313270