Self-supervised transfer learning framework driven by visual attention for benign–malignant lung nodule classification on chest CT

判别式 学习迁移 计算机科学 人工智能 恶性肿瘤 结核(地质) 深度学习 机器学习 肺癌 监督学习 模式识别(心理学) 放射科 医学 病理 人工神经网络 生物 古生物学
作者
Ruoyu Wu,Changyu Liang,Yuan Li,Xu Shi,Jiuquan Zhang,Hong Huang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:215: 119339-119339 被引量:19
标识
DOI:10.1016/j.eswa.2022.119339
摘要

Lung cancer is one of the most fatal malignant diseases, which poses an acute menace to human health and life. The accurate differential diagnosis of lung nodules is a vital step in the computed tomography (CT)-based noninvasive screening of lung cancer. Though deep learning-based methodologies have achieved good results in the task of nodule malignancy prediction, there are still two fundamental challenges that are required to be overcome, including insufficient labeled samples and the interferences of background tissues. Motivated by the above facts, a self-supervised transfer learning framework driven by visual attention (STLF-VA) is presented for benign–malignant identification of nodules on chest CT, which advocates using volumes containing the entire nodule objects as inputs to obtain discriminative features. Compared with traditional models that designed 2D natural image-based transfer learning models or learning from scratch 3D models, the proposed STLF-VA method can effectively alleviate the dependence on labeled samples by exploring the valuable information from 3D unlabeled CT scans in a coarse-to-fine self-supervised transfer learning fashion. Unlike the single attention mechanism, the multi-view aggregative attention (MVAA) module embedded in the STLF-VA architecture fully recalibrates the multi-layer feature maps from multiple attention angles, and can strengthen the anti-interference ability on background information. Moreover, a new dataset CQUCH-LND is constructed for evaluating the effectiveness of the STLF-VA model in clinical practice. Experimental results on the clinical dataset CQUCH-LND and the public dataset LIDC-IDRI indicate that the proposed STLF-VA framework achieves more competitive performance than some state-of-the-art nodule classification approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
生椰拿铁发布了新的文献求助10
1秒前
1秒前
何aa完成签到,获得积分10
2秒前
6秒前
6秒前
沉静皮带完成签到 ,获得积分10
6秒前
yjf发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
8秒前
曾sir完成签到,获得积分10
8秒前
EIN10发布了新的文献求助10
9秒前
叶世玉发布了新的文献求助10
11秒前
菠萝完成签到 ,获得积分10
12秒前
4归0发布了新的文献求助10
12秒前
CWNU_HAN应助科研通管家采纳,获得30
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
CWNU_HAN应助科研通管家采纳,获得30
13秒前
田様应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
CWNU_HAN应助科研通管家采纳,获得30
13秒前
SYLH应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
SYLH应助科研通管家采纳,获得20
13秒前
高兴可乐完成签到,获得积分10
14秒前
cadcae发布了新的文献求助200
15秒前
17秒前
EIN10完成签到,获得积分20
17秒前
秋婷发布了新的文献求助10
18秒前
胡新语发布了新的文献求助10
21秒前
21秒前
21秒前
22秒前
煲煲煲仔饭应助来碗豆腐采纳,获得10
23秒前
花怜完成签到,获得积分20
24秒前
wtg发布了新的文献求助10
24秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Capitalism and Its Critics: A History: From the Industrial Revolution to AI 200
The Triumph of Economic Freedom: Debunking the Seven Myths of American Capitalism 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3832915
求助须知:如何正确求助?哪些是违规求助? 3375336
关于积分的说明 10488703
捐赠科研通 3094953
什么是DOI,文献DOI怎么找? 1704149
邀请新用户注册赠送积分活动 819814
科研通“疑难数据库(出版商)”最低求助积分说明 771661