Diagnosis of respiratory diseases for children using machine learning

机器学习 逻辑回归 人工智能 朴素贝叶斯分类器 毛细支气管炎 哮喘 分类器(UML) 计算机科学 医学 支持向量机 呼吸系统 内科学
作者
Mufeed Saleh,Mesüt Çevik
标识
DOI:10.1109/ismsit56059.2022.9932662
摘要

respiratory diseases are among the widespread diseases that affect child in abundance around the world, and which can increase the number of child deaths due to the speed of their spread and thus exhaust the global health institutions. Respiratory diseases vary according to their symptoms, and some of them may share some of the symptoms, the most famous of them are asthma, bronchiolitis, and pneumonia. Diagnosing these types of diseases and differentiating them based on clinical symptoms is not easy, especially for junior doctors, which may be inaccurate diagnosis and thus endanger the lives of children. The main objective of this study is to improve the diagnosis These three diseases are for children under two years of age and differentiate between them using machine learning models to classify the real data set based on the attributes provided by the pediatric consultant to help the junior doctors in distinguishing between these diseases. Two machine learning models were applied to the real data set based on the evaluation metrics. The results showed the superiority of the Naïve Bayes classifier, with an accuracy of 99.7093, over the second classifier Logistic Regression and therefore, it was adopting the first classifier as a classification model for our study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
fff完成签到,获得积分10
1秒前
1秒前
流氓兔完成签到,获得积分10
1秒前
1秒前
小小柴发布了新的文献求助10
2秒前
诸葛御风举报单薄的英姑求助涉嫌违规
2秒前
传奇3应助123采纳,获得30
3秒前
滚滚发布了新的文献求助10
4秒前
4秒前
4秒前
卤蛋发布了新的文献求助30
4秒前
5秒前
5秒前
5秒前
英姑应助Avra采纳,获得10
5秒前
曾经的路灯完成签到,获得积分10
5秒前
6秒前
科目三应助丹丹采纳,获得10
6秒前
6秒前
7秒前
依依应助时尚俊驰采纳,获得10
7秒前
刚刚好发布了新的文献求助10
7秒前
mft1989mft发布了新的文献求助10
8秒前
爱糖果的木完成签到,获得积分10
8秒前
科研通AI5应助罗鸯鸯采纳,获得10
9秒前
华仔应助平淡的快乐采纳,获得10
10秒前
10秒前
SCISSH完成签到 ,获得积分10
11秒前
11秒前
11秒前
12秒前
共享精神应助WW采纳,获得10
12秒前
许言完成签到,获得积分10
12秒前
不想当金牛座完成签到,获得积分10
12秒前
ffff完成签到,获得积分10
13秒前
Owen应助囜囜采纳,获得10
13秒前
13秒前
彭于晏应助孔雀翎采纳,获得10
14秒前
HEIKU应助qingniujushi采纳,获得10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796310
求助须知:如何正确求助?哪些是违规求助? 3341256
关于积分的说明 10305642
捐赠科研通 3057817
什么是DOI,文献DOI怎么找? 1677946
邀请新用户注册赠送积分活动 805721
科研通“疑难数据库(出版商)”最低求助积分说明 762759