Graphic Intelligent Diagnosis of Hypoxic-Ischemic Encephalopathy Using MRI-Based Deep Learning Model

列线图 逻辑回归 医学 缺氧缺血性脑病 人工智能 机器学习 脑病 计算机科学 内科学
作者
Tian Tian,Tongjia Gan,Jun Chen,Jun Lu,Guiling Zhang,Yiran Zhou,Jia Li,Haoyue Shao,Yufei Liu,Hongquan Zhu,Di Wu,Chengcheng Jiang,Jianbo Shao,Jingjing Shi,Wenzhong Yang,Wenzhen Zhu
出处
期刊:Neonatology [Karger Publishers]
卷期号:120 (4): 441-449 被引量:5
标识
DOI:10.1159/000530352
摘要

Heterogeneous MRI manifestations restrict the efficiency and consistency of neuroradiologists in diagnosing hypoxic-ischemic encephalopathy (HIE) due to complex injury patterns. This study aimed to develop and validate an intelligent HIE identification model (termed as DLCRN, deep learning clinical-radiomics nomogram) based on conventional structural MRI and clinical characteristics.In this retrospective case-control study, full-term neonates with HIE and healthy controls were collected in two different medical centers from January 2015 to December 2020. Multivariable logistic regression analysis was implemented to establish the DLCRN model based on conventional MRI sequences and clinical characteristics. Discrimination, calibration, and clinical applicability were used to evaluate the model in the training and validation cohorts. Grad-class activation map algorithm was implemented to visualize the DLCRN.186 HIE patients and 219 healthy controls were assigned to the training, internal validation, and independent validation cohorts. Birthweight was incorporated with deep radiomics signatures to create the final DLCRN model. The DLCRN model achieved better discriminatory power than simple radiomics models, with an area under the curve (AUC) of 0.868, 0.813, and 0.798 in the training, internal validation, and independent validation cohorts, respectively. The DLCRN model was well calibrated and has clinical potential. Visualization of the DLCRN highlighted the lesion areas that conformed to radiological identification.Visualized DLCRN may be a useful tool in the objective and quantitative identification of HIE. Scientific application of the optimized DLCRN model may save time for screening early mild HIE, improve the consistency of HIE diagnosis, and guide timely clinical management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白十一完成签到,获得积分10
刚刚
无定完成签到,获得积分10
1秒前
完美世界应助斯文的绾绾采纳,获得10
2秒前
酷炫的平蝶关注了科研通微信公众号
2秒前
4秒前
深情安青应助小白采纳,获得10
4秒前
7秒前
xq1699应助淡淡蛋挞采纳,获得10
7秒前
慕青应助zyw0326采纳,获得10
8秒前
8秒前
tomo发布了新的文献求助10
10秒前
12秒前
13秒前
多鱼完成签到 ,获得积分10
13秒前
SCUTXieYijia完成签到,获得积分20
13秒前
16秒前
18秒前
18秒前
没头脑发布了新的文献求助10
20秒前
jy发布了新的文献求助10
20秒前
小冉完成签到,获得积分10
21秒前
21秒前
kei完成签到,获得积分10
22秒前
Jiawen发布了新的文献求助10
22秒前
偲偲偲偲偲完成签到,获得积分10
23秒前
24秒前
24秒前
百甲完成签到,获得积分10
25秒前
材1发布了新的文献求助10
27秒前
Jiawen完成签到,获得积分10
28秒前
30秒前
SCUTXieYijia发布了新的文献求助30
30秒前
ycy发布了新的文献求助10
30秒前
30秒前
闫123发布了新的文献求助10
31秒前
33秒前
Akim应助阿瓦达采纳,获得10
35秒前
小二郎应助自信的半邪采纳,获得10
35秒前
36秒前
脑洞疼应助王泳茵采纳,获得10
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Implantable Technologies 500
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Theories of Human Development 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3918566
求助须知:如何正确求助?哪些是违规求助? 3463945
关于积分的说明 10931003
捐赠科研通 3192030
什么是DOI,文献DOI怎么找? 1763992
邀请新用户注册赠送积分活动 854528
科研通“疑难数据库(出版商)”最低求助积分说明 794337