The application of machine learning based energy management strategy in multi-mode plug-in hybrid electric vehicle, part I: Twin Delayed Deep Deterministic Policy Gradient algorithm design for hybrid mode

强化学习 水准点(测量) 计算机科学 能源管理 算法 汽车工程 数学优化 工程类 能量(信号处理) 人工智能 数学 统计 大地测量学 地理
作者
Changcheng Wu,Jiageng Ruan,Hanghang Cui,Bin Zhang,Tongyang Li,Kaixuan Zhang
出处
期刊:Energy [Elsevier BV]
卷期号:262: 125084-125084 被引量:50
标识
DOI:10.1016/j.energy.2022.125084
摘要

As the performance of Energy Management Strategy (EMS) is crucial for the energy efficiency of Hybrid Electric Vehicles (HEVs), a Deep Reinforcement Learning (DRL)-based algorithm, namely Twin Delayed Deep Deterministic Policy Gradient (TD3), is adopted to design EMS for the power Charge-Sustained (CS) stage of a multi-mode plug-in Hybrid Electric Vehicle (HEV). In addition, EMS is improved by combining the actor-network of TD3 with Gumbel-Softmax to realize mode selection and torque distribution simultaneously, which is a discrete (mode)-continuous (engine speed) hybrid action space and not applicable in original TD3. To reduce the unreasonable exploration of agents in discrete action, a rule-based mode control mechanism (RBMCM) is designed and involved in EMS. The improved algorithm speeds up the learning process and achieves better fuel economy. Simulation results show that the gap between the proposed strategy and the benchmark dynamic programming (DP) is reduced to 2.55% in the selected training cycle. Regarding the unknown testing cycles, the fuel economy of agents trained by the improved method overperforms traditional DRL-based EMS when it reaches more than 90% of the DP-based benchmarking. In conclusion, the proposed method provides a theoretical foundation for the solution of the hybrid space optimization problem for hybrid systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助跳跃萍采纳,获得10
刚刚
英姑应助火星上的迎天采纳,获得10
1秒前
1秒前
2秒前
积极的秋尽完成签到,获得积分10
2秒前
2秒前
科研通AI5应助超帅天曼采纳,获得10
3秒前
naturehome发布了新的文献求助10
3秒前
dildil发布了新的文献求助10
4秒前
pluto_完成签到,获得积分20
4秒前
4秒前
5秒前
Ferris完成签到,获得积分10
5秒前
5秒前
wr781586发布了新的文献求助50
6秒前
7秒前
略略略发布了新的文献求助10
7秒前
我如金匠完成签到,获得积分10
7秒前
accept应助跳跃盼波采纳,获得10
7秒前
8秒前
8秒前
8秒前
不懈奋进应助pluto_采纳,获得30
8秒前
8秒前
蜜HHH完成签到 ,获得积分10
9秒前
Lucas应助FJ采纳,获得10
9秒前
清氿完成签到,获得积分10
9秒前
大胆砖头应助冷傲山彤采纳,获得10
10秒前
天下第一帅完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
bkagyin应助可靠初露采纳,获得10
12秒前
超帅天曼完成签到,获得积分10
12秒前
12秒前
我如金匠发布了新的文献求助10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790721
求助须知:如何正确求助?哪些是违规求助? 3335649
关于积分的说明 10275642
捐赠科研通 3052119
什么是DOI,文献DOI怎么找? 1675026
邀请新用户注册赠送积分活动 803005
科研通“疑难数据库(出版商)”最低求助积分说明 761007