Automatic abdominal segmentation using novel 3D self-adjustable organ aware deep network in CT images

分割 计算机科学 人工智能 特征(语言学) 计算机视觉 模式识别(心理学) 图像分割 语言学 哲学
作者
Laquan Li,Haiguo Zhao,Hong Wang,Weisheng Li,Shenhai Zheng
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:84: 104691-104691 被引量:4
标识
DOI:10.1016/j.bspc.2023.104691
摘要

CT scan is an important reference means of disease diagnosis in practice. Automatic segmentation of organ regions can save a lot of time and labor costs, and allow doctors to produce more intuitive observations of the organization of the human body. However, automatic multi-organ segmentation in CT images remains challenging due to the complicated anatomical structures and low tissue contrast in CT images. Traditional segmentation methods are relatively inefficient for organ segmentation with large abdominal deformation, small volume, and blurry tissue boundaries, and the traditional network architectures are rarely designed to meet the requirements of lightweight and efficient clinical practice. In this paper, we propose a novel segmentation network named Self-Adjustable Organ Attention U-Net (SOA-Net) to overcome these limitations. To be a pragmatic solution for effective segmentation method, the SOA-Net includes multi-branches feature attention (MBFA) module and the feature attention aggregation (FAA) module. These two modules have multiple branches with different kernel sizes to capture different scales feature information based on multiple scales of the target organs. An adjustable attention is used on these branches to generate different sizes of the receptive fields in the fusion layer. On the whole, SOA-Net is a 3D self-adjustable organ aware deep network which can adaptively adjust their attention and receptive field sizes based on multiple scales of the target organs to realize the efficient segmentation of multiple abdominal organs. We evaluate our method on AbdomenCT-1K and AMOS2022 datasets and the final experiments proved that our model achieves the best segmentation performance compared with the state-of-the-art segmentation networks. (Our code will be publicly available soon).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Joanna发布了新的文献求助10
1秒前
2秒前
3秒前
冷酷的啤酒完成签到,获得积分10
3秒前
4秒前
4秒前
望北楼主完成签到,获得积分10
5秒前
敏感的夏青完成签到 ,获得积分10
5秒前
科研通AI5应助大洋猪采纳,获得10
6秒前
曾经的斑马完成签到,获得积分10
8秒前
lxy发布了新的文献求助10
9秒前
9秒前
ASC发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
Marlo发布了新的文献求助10
10秒前
辛一完成签到,获得积分10
10秒前
姚姚完成签到,获得积分10
12秒前
14秒前
辛一发布了新的文献求助10
14秒前
imchenyin发布了新的文献求助10
15秒前
orange完成签到,获得积分20
17秒前
18秒前
lxy完成签到,获得积分10
19秒前
dm发布了新的文献求助10
19秒前
烟花应助自信机器猫采纳,获得10
20秒前
21秒前
22秒前
完美世界应助ling采纳,获得10
24秒前
29秒前
29秒前
29秒前
在水一方应助sasa采纳,获得10
30秒前
30秒前
在水一方应助小姚采纳,获得30
30秒前
31秒前
无限尔云发布了新的文献求助10
32秒前
33秒前
33秒前
英勇羿发布了新的文献求助30
33秒前
xiaixax完成签到,获得积分10
34秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870508
求助须知:如何正确求助?哪些是违规求助? 3412737
关于积分的说明 10680838
捐赠科研通 3137151
什么是DOI,文献DOI怎么找? 1730602
邀请新用户注册赠送积分活动 834253
科研通“疑难数据库(出版商)”最低求助积分说明 781073