Automatic abdominal segmentation using novel 3D self-adjustable organ aware deep network in CT images

分割 计算机科学 人工智能 特征(语言学) 计算机视觉 模式识别(心理学) 图像分割 哲学 语言学
作者
Laquan Li,Haiguo Zhao,Hong Wang,Weisheng Li,Shenhai Zheng
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:84: 104691-104691 被引量:8
标识
DOI:10.1016/j.bspc.2023.104691
摘要

CT scan is an important reference means of disease diagnosis in practice. Automatic segmentation of organ regions can save a lot of time and labor costs, and allow doctors to produce more intuitive observations of the organization of the human body. However, automatic multi-organ segmentation in CT images remains challenging due to the complicated anatomical structures and low tissue contrast in CT images. Traditional segmentation methods are relatively inefficient for organ segmentation with large abdominal deformation, small volume, and blurry tissue boundaries, and the traditional network architectures are rarely designed to meet the requirements of lightweight and efficient clinical practice. In this paper, we propose a novel segmentation network named Self-Adjustable Organ Attention U-Net (SOA-Net) to overcome these limitations. To be a pragmatic solution for effective segmentation method, the SOA-Net includes multi-branches feature attention (MBFA) module and the feature attention aggregation (FAA) module. These two modules have multiple branches with different kernel sizes to capture different scales feature information based on multiple scales of the target organs. An adjustable attention is used on these branches to generate different sizes of the receptive fields in the fusion layer. On the whole, SOA-Net is a 3D self-adjustable organ aware deep network which can adaptively adjust their attention and receptive field sizes based on multiple scales of the target organs to realize the efficient segmentation of multiple abdominal organs. We evaluate our method on AbdomenCT-1K and AMOS2022 datasets and the final experiments proved that our model achieves the best segmentation performance compared with the state-of-the-art segmentation networks. (Our code will be publicly available soon).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闫123完成签到,获得积分10
刚刚
DD发布了新的文献求助10
2秒前
Hello应助调皮钱钱采纳,获得10
4秒前
5秒前
5秒前
life完成签到,获得积分10
9秒前
开放灭绝发布了新的文献求助10
10秒前
11秒前
AnnieSsy完成签到,获得积分10
14秒前
Owen应助贺贺采纳,获得10
14秒前
15秒前
希望天下0贩的0应助aaa采纳,获得10
15秒前
ableyy完成签到 ,获得积分10
16秒前
18秒前
小语丝发布了新的文献求助10
19秒前
所所应助迟宏珈采纳,获得10
20秒前
在下小李完成签到 ,获得积分10
20秒前
23秒前
Wu完成签到,获得积分10
23秒前
鲤鱼翼完成签到,获得积分10
23秒前
酷波er应助二月里暖风采纳,获得10
24秒前
小王完成签到,获得积分10
25秒前
丘比特应助菠萝咕咾肉采纳,获得10
25秒前
汉堡包应助风语村采纳,获得10
26秒前
27秒前
29秒前
NexusExplorer应助AnnieSsy采纳,获得10
29秒前
小明应助在下小李采纳,获得10
29秒前
竹桃完成签到 ,获得积分0
30秒前
30秒前
beginagain完成签到,获得积分10
31秒前
jiangcai完成签到,获得积分0
31秒前
小可发布了新的文献求助50
33秒前
黄俊发布了新的文献求助10
35秒前
35秒前
牛秋莹完成签到,获得积分10
36秒前
36秒前
37秒前
墨客发布了新的文献求助10
38秒前
Shellingford完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
ACI SPEC 351.4 : 2024 Cementitious Grout Installation between Foundations and Equipment Bases—Specification 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4819824
求助须知:如何正确求助?哪些是违规求助? 4128570
关于积分的说明 12776916
捐赠科研通 3868153
什么是DOI,文献DOI怎么找? 2128610
邀请新用户注册赠送积分活动 1149359
关于科研通互助平台的介绍 1045262